Problem J. Range Reachability Query

Input file:
Output file:
Memory limit:
standard input
standard output
512 megabytes

You are given a directed acyclic graph with n vertices and m edges. The vertices are labeled by $1,2, \ldots, n$, and the edges are labeled by $1,2, \ldots, m$.
You will be given q queries. In the i-th query, you will be given four integers u_{i}, v_{i}, l_{i} and r_{i} $\left(1 \leq l_{i} \leq r_{i} \leq m\right)$. You need to answer whether vertex u_{i} can reach vertex v_{i} when only edges labeled by $k\left(l_{i} \leq k \leq r_{i}\right)$ are available.

Input

The first line contains a single integer $T(1 \leq T \leq 10)$, the number of test cases. For each test case:
The first line contains three integers n, m and $q(2 \leq n \leq 50000,1 \leq m \leq 100000,1 \leq q \leq 50000)$, denoting the number of vertices, the number of edges, and the number of queries.
Each of the following m lines contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}<v_{i} \leq n\right)$, denoting a directed edge from vertex u_{i} to vertex v_{i}.
In the next q lines, the i-th line contains four integers u_{i}, v_{i}, l_{i} and $r_{i}\left(1 \leq u_{i}<v_{i} \leq n, 1 \leq l_{i} \leq r_{i} \leq m\right)$, describing the i-th query.

Output

For each query, print a single line. If vertex u_{i} can reach vertex v_{i} when only edges labeled by $k\left(l_{i} \leq k \leq r_{i}\right)$ are available, print "YES". Otherwise, print "NO".

Example

			standard input		standard output
1				NO	
5	6	5		YES	
1	2			YES	
1	3			YES	
3	4				
2	4				
2	5				
3	5				
3	5	1	5		
3	5	1	6		
1	4	1	6		
1	4	2	3		
1	4	4	5		

