Problem K. Taxi

Input file: standard input
Output file: standard output
Memory limit: $\quad 512$ megabytes

There are n towns in Byteland, labeled by $1,2, \ldots, n$. The i-th town's location is $\left(x_{i}, y_{i}\right)$. Little Q got a taxi VIP card, he can use the VIP card to cut down the taxi fare. Formally, assume Little Q is at (x^{\prime}, y^{\prime}), if he calls a taxi to drive him to the k-th town, the VIP card will reduce $\min \left(\left|x^{\prime}-x_{k}\right|+\left|y^{\prime}-y_{k}\right|, w_{k}\right)$ dollars.

Little Q wants to make full use of his VIP card. He will give you q queries, in each query you will be given his location, and you need to choose a town such that the VIP card will reduce the most taxi fare.

Input

The first line contains a single integer $T(1 \leq T \leq 100)$, the number of test cases. For each test case:
The first line contains two integers n and $q(1 \leq n, q \leq 100000)$, denoting the number of towns and the number of queries.
Each of the following n lines contains three integers x_{i}, y_{i} and $w_{i}\left(1 \leq x_{i}, y_{i}, w_{i} \leq 10^{9}\right)$, describing a town. Each of the following q lines contains two integers x^{\prime} and $y^{\prime}\left(1 \leq x^{\prime}, y^{\prime} \leq 10^{9}\right)$, describing a query. It is guaranteed that the sum of all n is at most 500000 , and the sum of all q is at most 500000 .

Output

For each query, print a single line containing an integer, denoting the maximum possible reduced taxi fare.

Example

	standard input		standard output
1		6	
3	4	4	
1	5	7	5
5	1	6	9
2	3	9	
1	5		
2	2		
4	3		
10	10		

