Problem L. Two Permutations

Input file:	standard input
Output file:	standard output
Memory limit:	512 megabytes

There are two permutations $P_1, P_2, \ldots, P_n, Q_1, Q_2, \ldots, Q_n$ and a sequence R. Initially, R is empty. While at least one of P and Q is non-empty, you need to choose a non-empty array (P or Q), pop its leftmost element, and attach it to the right end of R. Finally, you will get a sequence R of length 2n.

You will be given a sequence S of length 2n, please count the number of possible ways to merge P and Q into R such that R = S. Two ways are considered different if and only if you choose the element from different arrays in a step.

Input

The first line contains a single integer T ($1 \le T \le 300$), the number of test cases. For each test case:

The first line contains a single integer n ($1 \le n \le 300\,000$), denoting the length of each permutation.

The second line contains n distinct integers P_1, P_2, \ldots, P_n $(1 \le P_i \le n)$.

The third line contains n distinct integers Q_1, Q_2, \ldots, Q_n $(1 \le Q_i \le n)$.

The fourth line contains 2n integers S_1, S_2, \ldots, S_{2n} $(1 \le S_i \le n)$.

It is guaranteed that the sum of all n is at most $2\,000\,000$.

Output

For each test case, output a single line containing an integer, denoting the number of possible ways. Note that the answer may be extremely large, so please print it modulo 998 244 353 instead.

Example

standard input	standard output
2	2
3	0
1 2 3	
1 2 3	
1 2 1 3 2 3	
2	
1 2	
1 2	
1 2 2 1	
1	