Problem I: Interesting numbers

Time limit: 10s, memory limit: 1GB.

The bitwise exclusive or, or simply XOR, is an operation denoted by \oplus which works on two integers by XOR-ing their corresponding bits: if x_{i}, y_{i}, z_{i} denote the i-th binary digit of x, y and z, where $z=x \oplus y$, then $z_{i}=\left(x_{i}+y_{i}\right) \bmod 2$.

You are given a positive integer k. A sequence of integers is interesting if XOR of any its two elements is less than or equal k.

Given a sequence a_{1}, \ldots, a_{n}, determine the largest possible length of its interesting subsequence. (A subsequence is a sequence that can be derived from the given sequence by deleting zero or more elements.)

Input

The first line of input contains the number of test cases $z(1 \leqslant z \leqslant 1000)$. The descriptions of the test cases follow.

The first line of each case contains two integers $n, k\left(1 \leqslant n \leqslant 30000,1 \leqslant k<2^{20}\right)$ - the length of the sequence, and the upper bound on maximum XOR of its two elements.

The second line contains n nonnegative integers $a_{1}, \ldots a_{n}\left(0 \leqslant a_{i}<2^{20}\right)$ - the given sequence described above.

The sum of n and k over all test cases do not exceed 200000 and 3200000 respectively.

Output

For every test case output a single integer - the maximum possible length of an interesting subsequence of the given sequence.

Example

For an example input:	the correct output is:	
		4
1		
7	11	
3	12	9
10	16	3

Explanation

The elements 3, 9, 10 and 3 form an interesting subsequence, as XOR of every pair is not larger then 11 . For example $9 \oplus 10=1001_{2} \oplus 1010_{2}=11_{2}=3 \leqslant 11$. There is no subsequence consisting of five elements with the same property, e.g. the sequence ($3,9,10,3,4$) is not interesting because of $4 \oplus 9=100_{2} \oplus 1001_{2}=1101_{2}=13>11$.

