1003.Find the Number of Paths

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
8 seconds
512 megabytes

Huah has $n+k$ cities numbered $1,2, \ldots, n+k$, the city $i(1 \leq i<n+k)$ to the city $i+1$ has $n+k-i$ distinct one-way roads.

For each $x=1,2, \ldots, n-1$, the city $i(x<i \leq n+k)$ to the city $i-x$ has a_{x} distinct one-way roads.
For $m=k+1, k+2, \ldots, k+n$, find the number of paths from city $k+1$ to city m that pass through exactly k number of roads.
Two paths are distinct when and only if the sequence of edges they pass through is distinct and the answer is modulo 998244353.

Input

First line has one integer $T(1 \leq T \leq 14)$, indicating there are T test cases. In each case:
First line input two integers $n, k\left(2 \leq n \leq 2 \times 10^{5}, 1 \leq k \leq 2 \times 10^{5}\right)$.
Second line $n-1$ integers $a_{1}, a_{2}, \ldots, a_{n-1}\left(0 \leq a_{i} \leq 998244352\right)$.
There is a blank line between case $i(1 \leq i<T)$ and case $i+1$.
Input guarantee $\sum(n+k) \leq 1006769$.

Output

In each case, output a row of n integers with the i-th integer being the answer when $m=k+i$.

Example

standard input	standard output	
4	502	
32	020	
12	11430702682546956742546168073846080 520	5140800
31		
12		
510		
2333		
$\begin{aligned} & 33 \\ & 166374059748683265 \end{aligned}$		

