1005.Yet Another Easy Function Sum Problem

Input file:	standard input
Output file:	standard output
Time limit:	20 seconds
Memory limit:	512 megabytes

Two years ago, Silver187 learned Mobius inversion and knew how to calculate ($1 \leq n \leq 10^{9}$)

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{gcd}(i, j)
$$

One year ago, Silver187 learned how to calculate ($1 \leq n \leq 10^{5}$)

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \varphi(i j)
$$

But he tried to solve this problem when $1 \leq n \leq 10^{9}$. Finally, he failed to solve it. But he didn't completely fail, he solved a similar problem:
Silver 187 defines that if $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}\left(p_{i} \in \operatorname{prime}, \alpha_{i}>0, \forall i \neq j, p_{i} \neq p_{j}\right)$, then $H(n)=\prod_{i=1}^{k} p_{i}$.
Silver 187 likes gcd, so he wants to ask you to calculate the result of the following formula.

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n} H(i j)[\operatorname{gcd}(i, j)=1]\right) \bmod 10^{9}+7
$$

Now, Silver187 asks you to solve this problem.

Input

First line has one integer $T(1 \leq T \leq 5)$, indicating there are T test cases. In each case:
Only one line contains an integer $n\left(1 \leq n \leq 10^{9}\right)$.
Input guarantee $\sum n \leq 2 \times 10^{9}$.

Output

In each case, output an integer on a line.

Example

	standard input	standard output
5	23	
3	119	
5	181591410	
1000	452132610	
10000	74649566	

