Problem B. Independent Feedback Vertex Set

Input file: standard input
Output file: standard output

Yukikaze loves graph theory, especially forests and independent sets.

- Forest: an undirected graph without cycles.
- Independent set: a set of vertices in a graph such that for every two vertices, there is no edge connecting the two.

Yukikaze has an undirected graph $G=(V, E)$ where V is the set of vertices and E is the set of edges. Each vertex in V has a vertex weight. Now she wants to divide V into two complementary subsets V_{I} and V_{F} such that V_{I} is an independent set, and the induced subgraph $G\left[V_{F}\right]$ is a forest. The induced subgraph $G\left[V_{F}\right]$ is the graph whose vertex set is V_{F} and whose edge set consists of all of the edges in E that have both endpoints in V_{F}. In addition, she wants to maximize the sum of weights of vertices in V_{I}.
Since this problem is NP-hard for general graphs, she decides to solve a special case of the problem. We can build a special graph by the following steps. Initially, the graph consists of three vertices $1,2,3$ and three edges $(1,2),(2,3),(3,1)$. When we add a vertex x into the graph, we select an edge (y, z) that already exists in the graph and connect (x, y) and (x, z). Keep doing this until there are n vertices in the graph.

Input

The first line of the input contains a single integer $T\left(1 \leq T \leq 10^{3}\right)$, indicating the number of test cases.
The first line of each test case contains a single integer $n\left(4 \leq n \leq 10^{5}\right)$, indicating the number of vertices in the graph. It is guaranteed that the sum of n over all test cases won't exceed 10^{6}.
The second line of each test case contains n positive integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$, indicating the weights of the vertices.
Initially, the graph consists of three vertices $1,2,3$ and three edges $(1,2),(2,3),(3,1)$. The i-th line of the next $n-3$ lines contains two integers $u, v(1 \leq u, v<i+3)$, indicating the addition of a vertex $i+3$ and two edges $(i+3, u),(i+3, v)$ to the graph. It is guaranteed that (u, v) already exists in the graph.

Output

For each test case, print an integer in a single line indicating the maximum sum of weights of vertices in V_{I}.

Example

				standard input		standard output
3					4	
4				5		
3	3	2	2		3	
1	2					
4						
2	5	5	2			
2	3					
5						
3	1	1	1	1		
1	2					
1	3					

