Problem F. Sumire

Input file: standard input
Output file: standard output
Calculate

$$
\sum_{i=l}^{r} f^{k}(i, B, d)
$$

where $f(x, B, d)$ means the number of times that digit d appears in the base- B form of x (ignoring leading zeros).
In this problem, we consider that $0^{0}=0$.

Input

The first line contains one integer $T\left(1 \leq T \leq 10^{4}\right)$, denoting the number of test cases.
For each test case, the only line contains five integers $k, B, d, l, r\left(0 \leq k \leq 10^{9}, 2 \leq B \leq 10^{9}, 0 \leq d<B\right.$, $1 \leq l \leq r \leq 10^{18}$), as the statement shows.

Output

For each test case, output an integer indicating the answer modulo $10^{9}+7$ in a single line.

Example

standard input						
3				6	standard output	
2	2	0	1	5		19
1	4	3	11	45		1049
10	14	11	19	198		

Note

For the first case in the sample, the answer is

$$
\begin{aligned}
& \sum_{i=1}^{5} f^{2}(i, 2,0) \\
& =0^{2}+1^{2}+0^{2}+2^{2}+1^{2} \\
& =6
\end{aligned}
$$

