Problem F. Sumire

Input file:	${\tt standard}$	input
Output file:	${\tt standard}$	output

Calculate

$$\sum_{i=l}^{r} f^k(i, B, d)$$

where f(x, B, d) means the number of times that digit d appears in the base-B form of x (ignoring leading zeros).

In this problem, we consider that $0^0 = 0$.

Input

The first line contains one integer T $(1 \le T \le 10^4)$, denoting the number of test cases.

For each test case, the only line contains five integers k, B, d, l, r $(0 \le k \le 10^9, 2 \le B \le 10^9, 0 \le d < B, 1 \le l \le r \le 10^{18})$, as the statement shows.

Output

For each test case, output an integer indicating the answer modulo $10^9 + 7$ in a single line.

Example

standard output	
6	
19	
1049	

Note

For the first case in the sample, the answer is

$$\sum_{i=1}^{5} f^{2}(i, 2, 0)$$

= 0² + 1² + 0² + 2² + 1²
= 6