Problem I. Counting Good Arrays

Input file: standard input

Output file: standard output
We consider an array consisting of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of length n is good if and only if for each $1 \leq i<n, a_{i+1}$ is divisible by a_{i}. Please note that we consider all the arrays with length 1 are good. Given two integers n and m, please count the number of good arrays whose length is no greater than n and whose largest element is no greater than m. Since the answer may be large, you just need to output the answer modulo $10^{9}+7$.

Input

The first line of the input contains a single integer $T\left(1 \leq T \leq 10^{3}\right)$, denoting the number of test cases.
Each of the next T lines contains two integers n, $m\left(1 \leq n, m \leq 10^{9}\right)$, denoting a test case.
It's guaranteed that the number of test cases satisfying $\max (n, m)>10^{3}$ will not exceed 50 , the number of test cases satisfying $\max (n, m)>10^{6}$ will not exceed 10 , and the number of test cases satisfying $\max (n, m)>10^{8}$ will not exceed 1 .

Output

For each test case, output the answer modulo $10^{9}+7$ in a single line.

Example

standard input	standard output		
5	4	12	
3	5	31	
10	12	3915	
24	17	190204	
114514	1919810	13530870	

Note

All the good arrays with $n=2, m=4$ are:

- $\{1\},\{2\},\{3\},\{4\}$
- $\{1,1\},\{1,2\},\{1,3\},\{1,4\}$
- $\{2,2\},\{2,4\}$
- $\{3,3\}$
- $\{4,4\}$

