## Problem J. Connectivity of Erdős-Rényi Graph

Input file: standard input<br>Output file: standard output

Yukikaze is studying the theory of random graphs.
In the probability version of the Erdôs-Rényi model, a random graph is constructed by connecting nodes randomly. That is, the random graph $G(n, p)$ is an undirected graph with $n$ vertices, and each edge from the $\frac{n(n-1)}{2}$ possible edges is included in the graph with probability $p$ independently from every other edge.
Now she wonders about the expected number of connected components in $G(n, p)$, modulo a large prime 998244353.

## Input

The first line of the input contains a single integer $T(1 \leq T \leq 100)$, denoting the number of test cases.
The first line of each test case contains three integers $q, a, b\left(1 \leq q \leq 10^{5}, 1 \leq a \leq b<998244353\right)$, denoting the number of queires and the probability $p=a / b$.
The second line of each test case contains $q$ integers $n_{1}, n_{2}, \ldots, n_{q}\left(1 \leq n_{i}<5 \times 10^{5}\right.$ for each $\left.1 \leq i \leq q\right)$ seperated by spaces, denoting that Yukikaze wants to know the expected number of connected components in $G\left(n_{i}, p\right)$.
Let $N$ be the sum of the maximum $n_{i}$ of each test case, and $Q$ be the sum of $q$ of all test cases. It's guaranteed that $N \leq 5 \times 10^{5}$ and $Q \leq 10^{5}$.

## Output

For each test case, output a single line containing the answers to the queries separated by spaces. You should output the answers modulo 998244353 . That is, if the answer is $\frac{P}{Q}$, you should output $P \cdot Q^{-1} \bmod$ 998244353 , where $Q^{-1}$ denotes the multiplicative inverse of $Q$ modulo 998244353 . We can prove that the answer can always be expressed in this form.
Don't output any extra spaces at the end of each line.

## Example

| standard input | standard output |
| :---: | :---: |
| 3 | 798850218 |
| 11451 | 132789114 |
| 4 | 904977379493892762 |
| 19198 |  |
| 10 |  |
| 2114514 |  |
| 1919810 |  |

