Problem K. Rock Tree

Input file: standard input Output file: standard output

Professor Rockdu is interested in tree problems, and recently he has created a new data structure called Rock Tree.

Given a constant number k and a tree $T = \{V, E\}$ with V as the node set and E as the edge set, a non-empty set of nodes A is called a *Rock Tree* of T if and only if:

- $A \subseteq V$
- All nodes of A are connected in T, which means for every pair of nodes u and v which are both in A, the nodes in the shortest path between u and v in T are all in A.
- The largest distance over every two nodes in A is not greater than k. The distance between two nodes u and v is defined as the number of nodes (including u and v) in the shortest path between u and v in the tree.

Now Rockdu makes a tree R with n nodes and each node i has a value a_i assigned to it. He wants to find the *Rock Tree* with the maximum sum of node values.

Input

The first line contains a single integer T ($1 \le T \le 100$), denoting the number of test cases.

For each test case, the first line contains two integers n, k $(1 \le n \le 10^5, 1 \le k \le n)$, indicating the number of nodes and the distance limit.

The second line contains n integers a_1, a_2, \ldots, a_n ($|a_i| \le 10^4$), indicating the value of nodes.

Each of the following n-1 lines contains two integers u, v $(1 \le u, v \le n)$, denoting an edge between u and v. It is guaranteed that these edges form a tree.

It is guaranteed that the sum of n over all test cases won't exceed 10^6 , and there are at most 4 test cases with n > 50000.

Output

For each test case, output an integer denoting the maximum sum of node values in a single line.

Example

standard input	standard output
2	11
7 3	20
3 2 -2 -6 6 3 -7	
1 2	
2 3	
2 4	
2 5	
5 6	
2 7	
12 5	
0 7 -1 3 -3 10 -1 -1 -5 -1 -4 -9	
1 2	
1 3	
1 4	
2 5	
4 6	
6 7	
1 8	
8 9	
5 10	
9 11	
9 12	