international collegiate programming contest ASIA REGIONAL CONTEST

ICPC JAKARTA 2021

Problem A XOR Pairs

XOR is a bitwise operator that evaluates the resulting bit into 1 if and only if their corresponding input bits differ (one of them is 1 while the other is 0). XOR operator is usually written with a symbol \oplus , or in most programming languages, the character $^{\land}$ (caret). For example, $(10 \oplus 6) = 12$.

In this problem, you are given an integer N and a set of integers $S_{1..M}$. Your task is to count how many pairs of integers $\langle A, B \rangle$ such that $1 \leq A, B \leq (A \oplus B) \leq N$, and $(A \oplus B) \notin S$.

For example, let N=10 and $S_{1..4}=\{4,6,7,10\}$. There are 6 pairs of $\langle A,B\rangle$ that satisfy the condition.

- $\langle 1, 2 \rangle \rightarrow (1 \oplus 2) = 3$
- $\langle 1, 4 \rangle \rightarrow (1 \oplus 4) = 5$
- $\langle 1, 8 \rangle \rightarrow (1 \oplus 8) = 9$
- $\langle 2, 1 \rangle \rightarrow (2 \oplus 1) = 3$
- $\langle 4,1 \rangle \rightarrow (4 \oplus 1) = 5$
- $(8,1) \to (8 \oplus 1) = 9$

Observe that a pair such as $\langle 2, 4 \rangle$ does not satisfy the condition for this example as $(2 \oplus 4) = 6$ but $6 \in S$. Another pair such as $\langle 5, 1 \rangle$ also does not satisfy the condition as it violates the requirement $A, B \leq (A \oplus B)$.

Input

Input begins with a line containing two integers N M ($1 \le N \le 10^6$; $1 \le M \le 100\,000$) representing the given N and the size of the set of integers $S_{1..M}$. The next line contains M integers S_i ($1 \le S_i \le 10^6$) representing the set of integers $S_{1..M}$.

Output

Output contains an integer in a line representing the number of $\langle A, B \rangle$ such that $1 \leq A, B \leq (A \oplus B) \leq N$ and $(A \oplus B) \notin S_{1...M}$.

Sample Input #1

international collegiate programming contest ASIA REGIONAL CONTEST

ICPC JAKARTA 2021

Sample Output #1

6

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

8 5

4 3 5 8 1

Sample Output #2

10

Explanation for the sample input/output #2

There are 10 pairs of $\langle A, B \rangle$ that satisfy the condition.

•
$$\langle 1, 6 \rangle \rightarrow (1 \oplus 6) = 7$$

•
$$\langle 3,5\rangle \rightarrow (3\oplus 5)=6$$

•
$$\langle 5, 3 \rangle \rightarrow (5 \oplus 3) = 6$$

•
$$\langle 2, 4 \rangle \rightarrow (2 \oplus 4) = 6$$

•
$$\langle 4,2\rangle \rightarrow (4\oplus 2)=6$$

•
$$\langle 6, 1 \rangle \rightarrow (6 \oplus 1) = 7$$

•
$$\langle 2,5\rangle \rightarrow (2\oplus 5)=7$$

•
$$\langle 4, 3 \rangle \rightarrow (4 \oplus 3) = 7$$

•
$$\langle 3, 4 \rangle \rightarrow (3 \oplus 4) = 7$$

•
$$\langle 5, 2 \rangle \rightarrow (5 \oplus 2) = 7$$

Sample Input #3

20 7

3 7 18 15 12 18 19

Sample Output #3

50

Sample Input #4

5 6

1 2 3 4 5 6

Sample Output #4

0