Problem A
 XOR Pairs

XOR is a bitwise operator that evaluates the resulting bit into 1 if and only if their corresponding input bits differ (one of them is 1 while the other is 0). XOR operator is usually written with a symbol \oplus, or in most programming languages, the character ${ }^{\wedge}$ (caret). For example, $(10 \oplus 6)=12$.

```
10 => 1010
    => 0110
        ----- }
        1100 => 12
```

In this problem, you are given an integer N and a set of integers $S_{1 . . M}$. Your task is to count how many pairs of integers $\langle A, B\rangle$ such that $1 \leq A, B \leq(A \oplus B) \leq N$, and $(A \oplus B) \notin S$.

For example, let $N=10$ and $S_{1 . .4}=\{4,6,7,10\}$. There are 6 pairs of $\langle A, B\rangle$ that satisfy the condition.

- $\langle 1,2\rangle \rightarrow(1 \oplus 2)=3$
- $\langle 1,4\rangle \rightarrow(1 \oplus 4)=5$
- $\langle 1,8\rangle \rightarrow(1 \oplus 8)=9$
- $\langle 2,1\rangle \rightarrow(2 \oplus 1)=3$
- $\langle 4,1\rangle \rightarrow(4 \oplus 1)=5$
- $\langle 8,1\rangle \rightarrow(8 \oplus 1)=9$

Observe that a pair such as $\langle 2,4\rangle$ does not satisfy the condition for this example as $(2 \oplus 4)=6$ but $6 \in S$. Another pair such as $\langle 5,1\rangle$ also does not satisfy the condition as it violates the requirement $A, B \leq(A \oplus B)$.

Input

Input begins with a line containing two integers $N M\left(1 \leq N \leq 10^{6} ; 1 \leq M \leq 100000\right)$ representing the given N and the size of the set of integers $S_{1 \ldots M}$. The next line contains M integers $S_{i}\left(1 \leq S_{i} \leq 10^{6}\right)$ representing the set of integers $S_{1 . . M}$.

Output

Output contains an integer in a line representing the number of $\langle A, B\rangle$ such that $1 \leq A, B \leq(A \oplus B) \leq N$ and $(A \oplus B) \notin S_{1 . . M}$.

Sample Input \#1

```
104
46710
```


Sample Output \#1

6

Explanation for the sample input/output \#1
This is the example from the problem description.

Sample Input \#2

```
8
4 3 5 8 1
```


Sample Output \#2

10

Explanation for the sample input/output \#2
There are 10 pairs of $\langle A, B\rangle$ that satisfy the condition.

- $\langle 1,6\rangle \rightarrow(1 \oplus 6)=7$
- $\langle 3,5\rangle \rightarrow(3 \oplus 5)=6$
- $\langle 5,3\rangle \rightarrow(5 \oplus 3)=6$
- $\langle 2,4\rangle \rightarrow(2 \oplus 4)=6$
- $\langle 4,2\rangle \rightarrow(4 \oplus 2)=6$
- $\langle 6,1\rangle \rightarrow(6 \oplus 1)=7$
- $\langle 2,5\rangle \rightarrow(2 \oplus 5)=7$
- $\langle 4,3\rangle \rightarrow(4 \oplus 3)=7$
- $\langle 3,4\rangle \rightarrow(3 \oplus 4)=7$
- $\langle 5,2\rangle \rightarrow(5 \oplus 2)=7$

Sample Input \#3

```
207
3
```


Sample Output \#3

```
5 0
```


Sample Input \#4

```
56
123456
```


Sample Output \#4

```
0
```

