Problem I. Gilneas

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	512 megabytes

Standing, Genn watched the sunlight flicker on the calm ocean. His whole body hurt, but his mind was clearer than it had been in weeks. He waited a moment, certain that his thoughts would soon become filled with memories he'd rather forget. But none haunted him now. The ships were separating from the flotilla. Now, with the trouble averted, each unraveled its own bright sail and glided out farther over the sun-speckled sea.
"You said to me that this Archdruid Stormrage believes my people will be an important asset to the Alliance."
"That I did."
"Perhaps he is right, then.... Perhaps he is right."
Genn has a tree with n vertices, rooted at vertex 1 . As a master of data structure, he performs m "access"operations to the tree in chronological order. For the $i^{\text {th }}$ operation, vertex x_{i} will be "accessed": all edges on the route from vertex x_{i} to the root will be painted color c_{i}. Meanwhile, the color of all other edges that have exactly one common vertex with the route will be reset to 0 .
The value of the tree is defined as the sum of color on all edges after all operations are performed.
Unfortunately, painting on trees is really a dangerous task, so each operation has only p_{i} probability to be performed successfully, and for probability $1-p_{i}$ the operation will be skipped and nothing will happen to the tree.
Genn wants to know the expected value of the tree modulo $10^{9}+7$.
Formally, let $M=10^{9}+7$. It can be demonstrated that the answer can be presented as a irreducible fraction $\frac{p}{q}$, where p and q are integers and $q \not \equiv 0(\bmod M)$. Output a single integer equal to $p \cdot q^{-1} \bmod M$. In other words, output an integer x such that $0 \leq x<M$ and $x \cdot q \equiv p(\bmod M)$.

Input

The input consists of multiple test cases.
The first line contains an integer $T(1 \leq T \leq 4)$ denoting the number of test cases.
For each test case, the first line contains two integers n and $m\left(1 \leq n, m \leq 2 \times 10^{5}\right)$, denoting the number of vertices and the number of operations.

The second line contains $n-1$ integers $f_{2}, f_{3} \ldots f_{n}\left(1 \leq f_{i} \leq i-1\right), f_{i}$ is the parent of vertex i.
Following m lines describe the operations. Each line contains three integers $x_{i}, c_{i}, p_{i}\left(1 \leq x_{i} \leq n, 1 \leq c_{i}, p_{i}<10^{9}+7\right)$. Note that p_{i} ought to be a fraction $\in[0,1]$ but is given in the special form described above.

Output

For each test case, output one line containing one integer indicating the answer.

Example

standard input	standard output
2	125000005
53	34778673
1133	
21500000004	
42500000004	
53500000004	
1010	
122325482	
10804225294637128	
1561941603324991490	
3752444595585213411	
5210303898641078478	
6693964040699726787	
988218141070805620	
7950609757940002046	
4478347490231203984	
8152593189752354400	
2557926271296109563	

