Problem A. Arithmetic Subsequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 megabytes

Given an integer array $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ of length n, you need to determine if there exists an integer array $B=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ such that the followings hold:

- The array B is a rearrangement of A, i.e., there exists a permutation $p=\left[p_{1}, p_{2}, \ldots, p_{n}\right]$ of size n such that $b_{i}=a_{p_{i}}$ for each $1 \leq i \leq n$.
- The array B doesn't contain any arithmetic subsequence of length at least 3 .

A sequence $C=\left[c_{1}, c_{2}, \ldots, c_{k}\right]$ is called an arithmetic subsequence of B if and only if the followings are satisfied:

- There exists a sequence of indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq N$, such that $c_{j}=b_{i_{j}}$ for each $1 \leq j \leq k$;
- C forms an arithmetic progression, i.e., for each $1 \leq i \leq k-2$, we have $c_{i+2}-c_{i+1}=c_{i+1}-c_{i}$.

Input

The first line contains an integer $T(1 \leq T \leq 25)$, denoting the number of test cases.
The first line of each test case contains an integer $n(1 \leq n \leq 5000)$, denoting the size of array A.
The next line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$, denoting the elements of array A.

Output

For each test case, if no such array B exists, output "NO"(without quotes) in a line. Otherwise, output "YES"(without quotes) in a line, and in the next line output a valid array B. If there are multiple arrays B that satisfy the requirement, outputting any of them would be considered correct.

Example

				standard input		standard output		
2							YES	
4						8	6	9
3	6	8	9					
5								
1	1	1	1	1				

