Problem H. Shortest Path in GCD Graph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2.5 seconds

512 megabytes

There is an edge-weighted complete graph K_{n} with n vertices, where vertices are labeled through $1,2, \ldots, n$. For each $1 \leq i<j \leq n$, the weight of the edge (i, j) between i and j is $g c d(i, j)$, the greatest common divisor of i and j.
You need to answer q queries. In each query, given two vertices u, v, you need to answer the length of the shortest path as well as the number of shortest paths between u, v. Since the number of shortest paths may be too large, you only need to output it modulo 998244353.

Input

The first line contains two integers $n, q\left(2 \leq n \leq 10^{7}, 1 \leq q \leq 50000\right)$, denoting the number vertices in the graph and the number of queries, respectively.
Then q lines follow, where each line contains two integers $u, v(1 \leq u, v \leq n, u \neq v)$, denoting a query between u and v.

Output

For each query, output one line contains two integers, denote the length and number of shortest path between given nodes, respectively. Note that only the number of shortest paths should be taken modulo 998244353.

Example

	standard input		standard output	
6	2	1	1	
4	5	2	2	
3	6			

