

Problem C. New Equipments III

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	1024 mebibytes

Little Q's factory recently purchased n pieces of new equipment, labeled by $1, 2, \ldots, n$.

There are n workers in the factory, labeled by 1, 2, ..., n. Each worker can be assigned to no more than one piece of equipment, and no piece of equipment can be assigned to multiple workers. If Little Q assigns the *i*-th worker to the *j*-th piece of equipment, they will bring $p_{i,j}$ profits. However, these workers are not so experienced, so most of the values in matrix p are equal to zero, except m cells. You will be given these m cells.

Now please for every k $(1 \le k \le n)$ find k pairs of workers and pieces of equipment, then assign workers to these pieces of equipment, such that the total profits for these k pairs are maximized.

Input

The input contains only a single case.

The first line contains two integers n and m $(1 \le n \le 50\,000, 1 \le m \le 200\,000)$, denoting the number of workers/pieces of new equipment and the number of special cells in p.

Each of the following m lines contains three integers u_i, v_i and w_i $(1 \le u_i, v_i \le n, 1 \le w_i \le 5)$, denoting the $p_{u_i,v_i} = w_i$. Each pair of u_i and v_i will be described at most once.

Output

Output n lines, the k-th $(1 \le k \le n)$ of which containing an integer, denoting the maximum possible total profits for k pairs of workers and pieces of equipment.

Examples

standard input	standard output
2 3	4
1 1 4	5
1 2 2	
2 1 3	
2 3	5
1 1 5	5
1 2 2	
2 1 2	