

Problem G. Factor

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 mebibytes

Let \mathbb{F}_x be the set of all factors of integer x (recall that positive integer f is a factor of x if x is divisible by f). If for all $1 \le y \le x$ there exists a subset of \mathbb{F}_x such that the sum of elements in this subset equals y, then x is considered a good integer.

For example, 6 is good because $\mathbb{F}_6 = \{1, 2, 3, 6\}$ and 4 = 1 + 3 and 5 = 2 + 3. 5 is not good because $\mathbb{F}_5 = \{1, 5\}$ and we can't find a subset whose sum equals 2, 3 or 4.

Given an integer n, calculate the number of good integers such that $1 \le x \le n$.

Input

There is only one test case in each test file.

The first and only line contains an integer $n \ (1 \le n \le 10^{12})$.

Output

Output one line containing one integer indicating the number of good integers such that $1 \le x \le n$.

Examples

standard input	standard output
10	5
20	9
50	17