Problem H．Graph Operation

Input file：
Output file：
Time limit：
Memory limit：
standard input
standard output
1 second
1024 mebibytes

You are given two undirected graphs G and H ．Both G and H have exactly n vertices and m edges，and the vertices are labeled from 1 to n ．Now，you need to change graph G to graph H ．You can perform the following operation any number of times：
－First select four distinct vertices a, b, c ，and d ．You should ensure that $a \sim b, c \sim d$ while $a \nsim c$ ， $b \nsim d$ ．
－Delete the edge between a and b ，and the one between c and d ．Add an edge between a and c and one between b and d ．

Here $a \sim b$ means that there exists an edge between a and b ，and $a \nsim b$ means that there doesn＇t exist an edge between a and b ．
Note that you can select a different set of a, b, c, d each time．Please determine whether you can change graph G to graph H ．If yes you also need to provide the detailed steps．

Input

The first line of the input contains two integers n and $m\left(4 \leq n \leq 1000,0 \leq m \leq\binom{ n}{2}\right)$ indicating the number of vertices and edges in graph G and H ．
For the following m lines，the i－th line contains two integers u and v where $1 \leq u \neq v \leq n$ ，indicating that there exists an edge between u and v in graph G ．
For the following m lines，the i－th line contains two integers u and v where $1 \leq u \neq v \leq n$ ，indicating that there exists an edge between u and v in graph H ．
Neither graph G nor H has multi－edges or self－loops．

Output

If you cannot change G to H output＂－1＂（without quotes）．
Otherwise first output an integer $r\left(0 \leq r \leq 3 \times 10^{6}\right)$ in one line indicating the number of operations you need．

For the following r lines，output four integers a_{i}, b_{i}, c_{i} and d_{i} in the i－th line separated by a space， indicating that for the i－th operation you choose vertices a_{i}, b_{i}, c_{i} and d_{i} ．Note that $a_{i}, b_{i}, c_{i}, d_{i}$ must be distinct．

Example

| | standard input | | | standard output | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | | 1 | | | |
| 1 | 2 | | 2 | 3 | 4 | |
| 3 | 4 | | | | | |
| 1 | 3 | | | | | |
| 2 | 4 | | | | | |

