12 Expected Inversions

12.1 Problem Description

For an integer sequence a_{1}, \ldots, a_{n} of length n, its inversion number $\operatorname{inv}(a)$ is defined as the number of integer pairs (i, j) such that $1 \leq i<j \leq n$ and $a_{i}>a_{j}$.

For a given rooted tree of n nodes (with vertices numbered from 1 to n), a DFS procedure on the tree is as following.

- During the process, we maintain a current vertex, namely u, and a set of visited vertices, namely M.
- Let the root of the tree be x. Initially, $u=x$ and $M=\{x\}$.
- Repeat the following process until M contains all vertices:
- - If there is at least one child vertex of u that is not in M, randomly choose one among those vertices equiprobably (namely v). Set u to v and add v to M.
- Otherwise, set u to the father of u.

For each $u=1, \ldots, n$, we record the number of vertices in M when u is added to M (including u). Let this number be d_{u}. We call $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ a DFS order. As DFS procedure is non-deterministic, the resulting DFS order may vary as well. Assume that each decision in the DFS procedure is independent.

You are given an unrooted tree of n vertices, with vertices numbered from 1 to n. For each $i=1, \ldots, n$, compute the expected inversion number of the DFS order when rooting the tree at i and start a DFS procedure. To avoid precision errors, print the answer modulo 998244353.

You are given T independent test cases. Solve each of them.
How to compute non-integers modulo 998244353: It can be proved that the answer to this problem can always be written as a fraction P / Q with P, Q being integers and $Q \not \equiv 0(\bmod 998244353)$. There is exactly one integer $R \in[0,998244353)$ that satisfies $Q R \equiv P \quad(\bmod 998244353)$. Print this R as the answer.

12.2 Input

The first line of input contains a single integer $T(1 \leq T \leq 10)$, indicating the number of test cases. Then T test cases follow.

The first line of each test case contains a single integer $n\left(1 \leq n \leq 10^{5}\right)$, indicating the number of vertices in the tree. Each of the next $n-1$ lines contains two integers $u, v(1 \leq u, v \leq n)$, indicating an edge on the tree. It is guaranteed that the input edges form a tree.

12.3 Output

For each test case, print the answers in n lines. The i-th line should contain the expected inversion number of the DFS order when rooting the tree at vertex i.

12.4 Sample Input

1
3
12
13
12.5 Sample Output

499122177
1
2

