Problem A
 Decimal Sequences

Input: Standard Input
 Time Limit: 1 second

Hanako learned the conjecture that all the non-negative integers appear in the infinite digit sequence of the decimal representation of $\pi=3.14159265 \cdots$, the ratio of a circle's circumference to its diameter. After that, whenever she watches a sequence of digits, she tries to count up non-negative integers whose decimal representations appear as its subsequences.

For example, given a sequence "3 0 1", she finds representations of five non-negative integers 3, $0,1,30$ and 301 that appear as its subsequences.

Your job is to write a program that, given a finite sequence of digits, outputs the smallest nonnegative integer not appearing in the sequence. In the above example, 0 and 1 appear, but 2 does not. So, 2 should be the answer.

Input

The input consists of a single test case.

$$
\begin{aligned}
& n \\
& d_{1} d_{2} \cdots d_{n}
\end{aligned}
$$

n is a positive integer that indicates the number of digits. Each of d_{k} 's $(k=1, \ldots, n)$ is a digit. There is a space or a newline between d_{k} and $d_{k+1}(k=1, \ldots, n-1)$.

You can assume that $1 \leq n \leq 1000$.

Output

Print the smallest non-negative integer not appearing in the sequence.

Sample Input 1	Sample Output 1
3	
3	0

Sample Input $2 \quad$ Sample Output 2
$\left.\begin{array}{llllllllll}11 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 1\end{array}\right) \quad 12$

10	10								
9	0	8	7	6	5	4	3	2	1

Sample Input 4

Sample Output 4

100																		
3	6	7	5	3	5	6	2	9	1	2	7	0	9	3	6	0	6	2
6	1	8	7	9	2	0	2	3	7	5	9	2	2	8	9	7	3	6
1	2	9	3	1	9	4	7	8	4	5	0	3	6	1	0	6	3	2
0	6	1	5	5	4	7	6	5	6	9	3	7	4	5	2	5	4	7
4	4	3	0	7	8	6	8	8	4	3	1	4	9	2	0	6	8	9
2	6	6	4	9														

3675356291270936062
6187920237592289736
1293194784503610632
0615647656937452547
4430786884314920689
26649

Sample Input 5

Sample Output 5

| 100 | | | | | | | | | | | | | | | | | 86 | | |
| :--- |
| 7 | 2 | 7 | 5 | 4 | 7 | 4 | 4 | 5 | 8 | 1 | 5 | 7 | 7 | 0 | 5 | 6 | 2 | 0 | |
| 4 | 3 | 4 | 1 | 1 | 0 | 6 | 1 | 6 | 6 | 2 | 1 | 7 | 9 | 2 | 4 | 6 | 9 | 3 | |
| 6 | 2 | 8 | 0 | 5 | 9 | 7 | 6 | 3 | 1 | 4 | 9 | 1 | 9 | 1 | 2 | 6 | 4 | 2 | |
| 9 | 7 | 8 | 3 | 9 | 5 | 5 | 2 | 3 | 3 | 8 | 4 | 0 | 6 | 8 | 2 | 5 | 5 | 0 | |
| 6 | 7 | 1 | 8 | 5 | 1 | 4 | 8 | 1 | 3 | 7 | 3 | 3 | 5 | 3 | 0 | 6 | 0 | 6 | |
| 5 | 3 | 2 | 2 | 2 | | | | | | | | | | | | | | | |

Sample Input 6

Sample Output 6

1	0

