Problem E

Bringing Order to Disorder

Input: Standard Input

Time Limit: 1 second

A sequence of digits usually represents a number, but we may define an alternative interpretation. In this problem we define a new interpretation with the order relation \prec among the digit sequences of the same length defined below.

Let s be a sequence of n digits, $d_{1} d_{2} \cdots d_{n}$, where each $d_{i}(1 \leq i \leq n)$ is one of $0,1, \ldots$, and 9 . Let $\operatorname{sum}(s), \operatorname{prod}(s)$, and $\operatorname{int}(s)$ be as follows:

$$
\begin{aligned}
\operatorname{sum}(s) & =d_{1}+d_{2}+\cdots+d_{n} \\
\operatorname{prod}(s) & =\left(d_{1}+1\right) \times\left(d_{2}+1\right) \times \cdots \times\left(d_{n}+1\right) \\
\operatorname{int}(s) & =d_{1} \times 10^{n-1}+d_{2} \times 10^{n-2}+\cdots+d_{n} \times 10^{0}
\end{aligned}
$$

$\operatorname{int}(s)$ is the integer the digit sequence s represents with normal decimal interpretation.
Let s_{1} and s_{2} be sequences of the same number of digits. Then $s_{1} \prec s_{2}\left(s_{1}\right.$ is less than $\left.s_{2}\right)$ is satisfied if and only if one of the following conditions is satisfied.

1. $\operatorname{sum}\left(s_{1}\right)<\operatorname{sum}\left(s_{2}\right)$
2. $\operatorname{sum}\left(s_{1}\right)=\operatorname{sum}\left(s_{2}\right)$ and $\operatorname{prod}\left(s_{1}\right)<\operatorname{prod}\left(s_{2}\right)$
3. $\operatorname{sum}\left(s_{1}\right)=\operatorname{sum}\left(s_{2}\right), \operatorname{prod}\left(s_{1}\right)=\operatorname{prod}\left(s_{2}\right)$, and $\operatorname{int}\left(s_{1}\right)<\operatorname{int}\left(s_{2}\right)$

For 2-digit sequences, for instance, the following relations are satisfied.

$$
00 \prec 01 \prec 10 \prec 02 \prec 20 \prec 11 \prec 03 \prec 30 \prec 12 \prec 21 \prec \cdots \prec 89 \prec 98 \prec 99
$$

Your task is, given an n-digit sequence s, to count up the number of n-digit sequences that are less than s in the order \prec defined above.

Input

The input consists of a single test case in a line.

$$
d_{1} d_{2} \cdots d_{n}
$$

n is a positive integer at most 14 . Each of d_{1}, d_{2}, \ldots, and d_{n} is a digit.

Output

Print the number of the n-digit sequences less than $d_{1} d_{2} \cdots d_{n}$ in the order defined above.

Sample Input 1	Sample Output 1
20	4

Sample Input $2 \quad$ Sample Output 2

020	5

Sample Input $3 \quad$ Sample Output 3

118	245

Sample Input $4 \quad$ Sample Output 4

1111111111111	40073759

Sample Input 5 Sample Output 5

99777222222211	23733362467675

