
ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2015–11–29

Problem F

Deadlock Detection
Input: Standard Input
Time Limit: 2 seconds

You are working on an analysis of a system with multiple processes and some kinds of resource
(such as memory pages, DMA channels, and I/O ports). Each kind of resource has a certain
number of instances. A process has to acquire resource instances for its execution. The number
of required instances of a resource kind depends on a process. A process finishes its execution
and terminates eventually after all the resource in need are acquired. These resource instances
are released then so that other processes can use them. No process releases instances before its
termination. Processes keep trying to acquire resource instances in need, one by one, without
taking account of behavior of other processes. Since processes run independently of others, they
may sometimes become unable to finish their execution because of deadlock.

A process has to wait when no more resource instances in need are available until some other
processes release ones on their termination. Deadlock is a situation in which two or more
processes wait for termination of each other, and, regrettably, forever. This happens with the
following scenario: One process A acquires the sole instance of resource X, and another process
B acquires the sole instance of another resource Y; after that, A tries to acquire an instance
of Y, and B tries to acquire an instance of X. As there are no instances of Y other than one
acquired by B, A will never acquire Y before B finishes its execution, while B will never acquire
X before A finishes. There may be more complicated deadlock situations involving three or more
processes.

Your task is, receiving the system’s resource allocation time log (from the system’s start to a
certain time), to determine when the system fell into a deadlock-unavoidable state. Deadlock
may usually be avoided by an appropriate allocation order, but deadlock-unavoidable states are
those in which some resource allocation has already been made and no allocation order from
then on can ever avoid deadlock.

Let us consider an example corresponding to Sample Input 1 below. The system has two kinds
of resource R1 and R2, and two processes P1 and P2. The system has three instances of R1 and
four instances of R2. Process P1 needs three instances of R1 and two instances of R2 to finish
its execution, while process P2 needs a single instance of R1 and three instances of R2. The
resource allocation time log is given as follows.

13



P1’s need P2’s need available
time event R1 R2 R1 R2 R1 R2 deadlock

0 start. 3 2 1 3 3 4
1 P1 acquired R1. 2 2 1 3 2 4
2 P2 acquired R2. 2 2 1 2 2 3
3 P1 acquired R2. 2 1 1 2 2 2
4 P2 acquired R1. 2 1 0 2 1 2 avoidable by finishing P2 first
5 P1 acquired R2. 2 0 0 2 1 1 unavoidable
6 P2 acquired R2. 2 0 0 1 1 0
7 P1 acquired R1. 1 0 0 1 0 0 arisen

At time 4, P2 acquired R1 and the number of available instances of R1 became less than P1’s
need of R1. Therefore, it became necessary for P1 to wait P2 to terminate and release the
instance. However, at time 5, P1 acquired R2 necessary for P2 to finish its execution, and thus
it became necessary also for P2 to wait P1; the deadlock became unavoidable at this time.

Note that the deadlock was still avoidable at time 4 by finishing P2 first (Sample Input 2).

Input

The input consists of a single test case formatted as follows.

p r t
l1 · · · lr
n1,1 · · · n1,r
...
np,1 · · · np,r
P1 R1
...
Pt Rt

p is the number of processes, and is an integer between 2 and 300, inclusive. The processes are
numbered 1 through p. r is the number of resource kinds, and is an integer between 1 and 300,
inclusive. The resource kinds are numbered 1 through r. t is the length of the time log, and is
an integer between 1 and 200, 000, inclusive. lj (1 ≤ j ≤ r) is the number of initially available
instances of the resource kind j, and is an integer between 1 and 100, inclusive. ni,j (1 ≤ i ≤ p,
1 ≤ j ≤ r) is the number of resource instances of the resource kind j that the process i needs,
and is an integer between 0 and lj , inclusive. For every i, at least one of ni,j is non-zero. Each
pair of Pk and Rk (1 ≤ k ≤ t) is a resource allocation log at time k meaning that process Pk

acquired an instance of resource Rk.

You may assume that the time log is consistent: no process acquires unnecessary resource
instances; no process acquires instances after its termination; and a process does not acquire
any instance of a resource kind when no instance is available.

14



Output

Print the time when the system fell into a deadlock-unavoidable state. If the system could still
avoid deadlock at time t, print −1.

Sample Input 1 Sample Output 1

2 2 7

3 4

3 2

1 3

1 1

2 2

1 2

2 1

1 2

2 2

1 1

5

Sample Input 2 Sample Output 2

2 2 5

3 4

3 2

1 3

1 1

2 2

1 2

2 1

2 2

-1

15


