InfO(1) CUP 2019
EDIȚIA a III-a
RUNDA NAȚIONALĂ
$\underset{\llcorner-\operatorname{P}}{\sim}$
SUBWAY

Subway

Time limit: 1 second Memory limit: $\mathbf{2 5 6}$ MB

Given an integer number K , generate a tree with minimum number of nodes such that there are exactly K pairs of nodes (X, Y), where X is an ancestor of Y.

Input

The input (from the console) will contain a single integer number, K - the number of pairs with the specified property.

Output

The output (to the console) will contain N+1 lines, representing the generated tree, the nodes being indexed from 0 .

The first line will contain the number N - the number of nodes in the tree.
The following N lines will contain each 2 numbers X and T, separated by a space, with the following meaning: node T is the direct ancestor of node X. If node X doesn't have a direct ancestor, T will have value -1 .

Constraints

Subtask	Score	Restrictions
1	20 points	$0 \leq K \leq 50$
2	30 points	$0 \leq K \leq 500$
3	50 points	$0 \leq K \leq 10^{9}$

For every test, you will get:

1. 100% points if $N_{\text {participant }}=N_{\text {committee }}$
2. 80% points if $N_{\text {participant }} \in\left[N_{\text {committee }}+1, N_{\text {committee }}+2\right]$
3. $\mathrm{P} \%$ points if $N_{\text {participant }} \geq N_{\text {committee }}+3$, unde $P=\frac{N_{\text {committee }}+3}{N_{\text {participant }}} * 50$

Note: $N_{\text {committee }}$ is the minimum number of nodes that a tree with the specified property can be generated with.

SUBWAY

EXEMPLES

Input (from the console)	Output (to the console)
2	3
	$0-1$
	10
	20

Details:

There are 2 pairs (X, Y), such that X is the ancestor of Y :

1. $(X, Y)=(0,1)$
2. $(X, Y)=(0,2)$

Input (from the console)	Output (to the console)
4	4
	$0-1$
	10
	20
	32

Details:

There are 4 pairs (X, Y), such that X is the ancestor of Y :

1. $(X, Y)=(0,1)$
2. $(X, Y)=(0,2)$
3. $(X, Y)=(0,3)$
4. $(X, Y)=(2,3)$
