Problem Table Tennis

Input file: standard input
 Output file: standard output

In Little Square's class everyone is obsessed with table tennis. Each person has a distinct non-negative integer score that represents their table tennis skill. His class has N people, and is perfectly balanced with respect to table tennis skill. This means that we can form $\frac{N}{2}$ teams of two such that the total table tennis skill of each team is equal. Note that this means that N is even.
Unfortunately, K people from Little Triangle's class have snuck into Little Square's classroom. Now there are $N+K$ people in the classroom, each of which has a distinct, non-negative, integer table tennis skill score. Choose N people from among these such that the resulting group is perfectly balanced with respect to table tennis skill.

Input

On the first line of the input you will find N and K. On the next line of the input you will find $N+K$ non-negative, distinct integers, in increasing order. These represent the table tennis skill scores of the people in the classroom, after those Little Triangle's class snuck in.

Output

Output one line, containing N non-negative, distinct integers, in increasing order. The outputs should be a subset of the table tennis skill scores of the people in the classroom, and should be perfectly balanced. If there are multiple solutions, any one is accepted.

Constraints

- $1 \leq N \leq 150.000$
- $1 \leq K \leq 400$
- $1 \leq$ table tennis skill score $\leq 1.000 .000 .000$

Subtask 1 (points: 11)

- $1 \leq N \leq 2.000$
- $K=1$

Subtask 2 (points: 9)

- $1 \leq N \leq 150.000$
- $K=1$

Subtask 3 (points: 14)

- $1 \leq N \leq 150.000$
- $K=2$

Subtask 4 (points: 15)

- $1 \leq N \leq 100$
- $1 \leq K \leq 100$

Subtask 5 (points: 9)

- $N+K \leq 18$

Subtask 6 (points: 14)

- $1 \leq N \leq 2.000$
- $1 \leq K \leq 20$

Subtask 7 (points: 15)

- $1 \leq N \leq 150.000$
- $1 \leq K \leq 20$

Subtask 8 (points: 13)

- No additional constraints.

Examples

standard input	standard output
$\begin{array}{llllllll} 4 & 3 & & & & & \\ 1 & 2 & 3 & 4 & 8 & 10 & 20 \end{array}$	1234
$\begin{array}{llllll} \hline 4 & 2 & & & & \\ 1 & 2 & 3 & 4 & 5 & 6 \end{array}$	1234

Explanation

In both examples, the output is correct since it has 4 elements, is a subset of the input, and since we can form teams of two of equal table tennis skill (one team with skills 1 and 4 , and one team with skills 2 and 3).
In the first example, it would also be correct to output $1,3,8,10$ or $2,4,8,10$.
In the the second example, it would also be correct to output $2,3,4,5$ or $3,4,5,6$.

