## B Bird tree

The Bird tree ${ }^{1}$ is an infinite binary tree, whose first 5 levels look as follows:


It can be defined as follows:


This is a co-recursive definition in which both occurrences of bird refer to the full (infinite) tree. The expression bird +1 means that 1 is added to every fraction in the tree, and $1 / b i r d$ means that every fraction in the tree is inverted (so $a / b$ becomes $b / a$ ).

Surprisingly, the tree contains every positive rational number exactly once, so every reduced fraction is at a unique place in the tree. Hence, we can also describe a rational number by giving directions ( $L$ for left subtree, $R$ for right subtree) in the Bird tree. For example, 2/5 is represented by LRR. Given a reduced fraction, return a string consisting of L's and R's: the directions to locate this fraction from the top of the tree.

## Input

On the first line a positive integer: the number of test cases, at most 100. After that per test case:

- one line with two integers $a$ and $b\left(1 \leq a, b \leq 10^{9}\right)$, separated by a ${ }^{\prime} /{ }^{\prime}$. These represent the numerator and denominator of a reduced fraction. The integers $a$ and $b$ are not both equal to 1 , and they satisfy $\operatorname{gcd}(a, b)=1$.

For every test case the length of the string with directions will be at most 10000 .

## Output

Per test case:

- one line with the string representation of the location of this fraction in the Bird tree.

[^0]
## Sample in- and output

| Input | Output |
| :--- | :--- |
| 3 | L |
| $1 / 2$ | LRR |
| $2 / 5$ | RLLR |
| $7 / 3$ |  |


[^0]:    ${ }^{1}$ Hinze, R. (2009). The Bird tree. J. Funct. Program., 19:491-508.

