Problem K. Tris

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: $\quad 256$ mebibytes
You are given some domino-like pieces. The following types of pieces are possible:

Note that there are only four types, and you may rotate and reflect any piece for further use. You want to place all the pieces in a matrix of size at most 800×800 so that you get a single non-self-touching cycle. Formally, this means:

- All pieces must fully fit in the matrix and be aligned with the grid.
- No two pieces may overlap.
- If a certain matrix cell is occupied by a piece, then exactly two of its four neighbours must also be occupied.
- All occupied cells are connected. In other words, you can travel from any occupied cell to any other occupied cell by only moving to adjacent occupied cells.
- The "interior" of the cycle must be a single 4-connected area.

Input

The input consists of a single line containing four integers: the number of pieces of each type (in the order they are shown in the image). It is guaranteed that each number is at least 2 and at most 100, and that at least one valid answer exists.

Output

The first line of output must contain two integers N and $M(N, M \leq 800)$ denoting the number of rows and columns in your matrix. The next lines must describe the matrix in the following format:

- The matrix must contain integers between 0 and the total number of pieces, inclusive.
- Cells occupied by the same piece must have the same value.
- Cells occupied by different pieces must have different values.
- Cells that are not occupied by any piece must have the value 0 .

If there are several valid answers, print any one of them.

Example

standard input	standard output	picture				
3434	116					
	012444	0	1	2	4	$4{ }^{4} 4$
	110003	1	1	0	0	3
	800033	8	0	0	0	33
	800090	8	0	0	0	${ }^{9} 10$
	800099	8	0	0	0	9 9
	10000013	10	0	0	0	$0{ }^{0} 13$
	100000011	10	0	0	0	$0{ }^{11}$
	120000011	12	0	0	0	0
	120000014	12	0	0	0	014
		6	0	0	0	$0{ }^{7} 7$
	655577	6	5	5	5	77

