Problem C. Counting Sequence

Input file:
Output file
Time limit:
Memory limit:
standard input
standard output
16 seconds
1024 mebibytes

We are given integers n and c.
A sequence $a_{1}, a_{2}, \ldots, a_{m}$ is good if and only if:

- $a_{i}>0$ for all $1 \leq i \leq m$,
- $\left|a_{i+1}-a_{i}\right|=1$ for all $1 \leq i \leq m-1$,
- $\sum_{i=1}^{m} a_{i}=n$.

For a good integer sequence $a_{1}, a_{2}, \ldots, a_{m}$, let us define

$$
f(a)=\sum_{i=1}^{m-1}\left[a_{i}>a_{i+1}\right]
$$

That is, $f(a)$ denotes the number of indices i that satisfy $a_{i}>a_{i+1}$ among all $1 \leq i \leq m-1$. We define the weight of the sequence a as the value of $c^{f(a)}$.

Your task is to calculate the sum of the weights of all good sequences, modulo 998244353.

Input

The first line contains two integers n and $c\left(1 \leq n \leq 3 \cdot 10^{5}, 0 \leq c<998244353\right)$.

Output

Output the answer modulo 998244353.

Examples

standard input	standard output
53	8
10	1
202239	273239559

Note

In the first example, all good sequences are as follows:

a	$f(a)$	$c^{f(a)}$
$[5]$	0	1
$[2,3]$	0	1
$[3,2]$	1	3
$[2,1,2]$	1	3

So the answer is $1+1+3+3=8$.

