

Problem C. Counting Sequence

Input file:	standard input	
Output file:	standard output	
Time limit:	16 seconds	
Memory limit:	1024 mebibytes	

We are given integers n and c.

A sequence a_1, a_2, \ldots, a_m is good if and only if:

- $a_i > 0$ for all $1 \le i \le m$,
- $|a_{i+1} a_i| = 1$ for all $1 \le i \le m 1$,
- $\sum_{i=1}^{m} a_i = n.$

For a good integer sequence a_1, a_2, \ldots, a_m , let us define

$$f(a) = \sum_{i=1}^{m-1} [a_i > a_{i+1}].$$

That is, f(a) denotes the number of indices *i* that satisfy $a_i > a_{i+1}$ among all $1 \le i \le m-1$. We define the *weight* of the sequence *a* as the value of $c^{f(a)}$.

Your task is to calculate the sum of the weights of all good sequences, modulo 998 244 353.

Input

The first line contains two integers n and c $(1 \le n \le 3 \cdot 10^5, 0 \le c < 998\,244\,353)$.

Output

Output the answer modulo 998 244 353.

Examples

standard input	standard output	
5 3	8	
1 0	1	
2022 39	273239559	

Note

In the first example, all good sequences are as follows:

a	f(a)	$c^{f(a)}$
[5]	0	1
[2, 3]	0	1
[3, 2]	1	3
[2, 1, 2]	1	3

So the answer is 1 + 1 + 3 + 3 = 8.