Problem F. Flower's Land

Input file: standard input Output file: standard output
 Time limit: 8 seconds
 Memory limit: 2048 mebibytes

The Kingdom of Flowers consists of n cities, and the i-th city grows a_{i} flowers. There are $n-1$ roads, where the i-th road connects cities u_{i} and v_{i}. It is guaranteed that for any two cities there is a path connecting them.

Now, the Kingdom of Flowers wants to hold a flower exhibition. To do that, you need to first choose a city z to build an exhibition hall, and then select exactly k cities $x_{1}, x_{2}, \ldots, x_{k}$ and transport the flowers from those k cities to the city z.

To avoid upsetting people in cities along the path, the organizers stipulated that if city x was selected, then all cities on the path from x to z had to be selected as well. In particular, this means that city z must be selected.

For each $z=1,2, \ldots, n$, find the maximum number of flowers that can be transported if city z is chosen to build the exhibition hall.

Input

The first line of the input contains two integers n and $k(1 \leq n \leq 40000,1 \leq k \leq \min (n, 3000))$.
The next line of the input contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 5 \cdot 10^{5}\right)$.
Each of the next $n-1$ lines contains two integers x and $y(1 \leq x, y \leq n, x \neq y)$, indicating that there is an edge between vertices x and y. It is guaranteed that the given graph is a tree.

Output

Output a single line containing n integers $f_{1}, f_{2}, \ldots, f_{n}$, where f_{i} denotes the answer for $z=i$.

Examples

standard input	standard output
$\begin{array}{llllll} 5 & 3 & & & \\ 6 & 10 & 4 & 3 & 4 \\ 3 & 4 & & & \\ 4 & 2 & & & \\ 2 & 5 & & & \\ 5 & 1 & & & \end{array}$	$20 \quad 20171720$
$\begin{array}{lllllll} \hline 7 & 4 & & & & & \\ 1 & 3 & 2 & 1 & 7 & 12 & 17 \\ 4 & 6 & & & & & \\ 1 & 4 & & & & & \\ 5 & 1 & & & & & \\ 2 & 5 & & & & & \\ 7 & 6 & & & & & \\ 3 & 2 & & & & & \\ \hline \end{array}$	31131331213131

