

Problem F. Flower's Land

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	2048 mebibytes

The Kingdom of Flowers consists of n cities, and the *i*-th city grows a_i flowers. There are n-1 roads, where the *i*-th road connects cities u_i and v_i . It is guaranteed that for any two cities there is a path connecting them.

Now, the Kingdom of Flowers wants to hold a flower exhibition. To do that, you need to first choose a city z to build an exhibition hall, and then select exactly k cities x_1, x_2, \ldots, x_k and transport the flowers from those k cities to the city z.

To avoid upsetting people in cities along the path, the organizers stipulated that if city x was selected, then all cities on the path from x to z had to be selected as well. In particular, this means that city z must be selected.

For each z = 1, 2, ..., n, find the maximum number of flowers that can be transported if city z is chosen to build the exhibition hall.

Input

The first line of the input contains two integers n and k $(1 \le n \le 40\,000, 1 \le k \le \min(n, 3000))$.

The next line of the input contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 5 \cdot 10^5)$.

Each of the next n-1 lines contains two integers x and y $(1 \le x, y \le n, x \ne y)$, indicating that there is an edge between vertices x and y. It is guaranteed that the given graph is a tree.

Output

Output a single line containing n integers f_1, f_2, \ldots, f_n , where f_i denotes the answer for z = i.

Examples

standard input	standard output
5 3	20 20 17 17 20
6 10 4 3 4	
3 4	
4 2	
2 5	
5 1	
7 4	31 13 13 31 21 31 31
1 3 2 1 7 12 17	
4 6	
1 4	
5 1	
2 5	
76	
3 2	