Problem H. Half Plane

Input file:	standard input
Output file:	standard output
Time limit:	12 seconds
Memory limit:	1024 mebibytes

Input file: standard input
Output file: standard output
Time limit: 12 seconds
Memory limit: 1024 mebibytes
This problem might be well-known in some countries, but how do other countries learn about such problems if nobody poses them.
There are n points on the plane, where the i-th point $\left(x_{i}, y_{i}\right)$ has value $\mathbf{d}_{i} \in D$. Two sets D and O are given, with the following properties:

- There exists a special element ε_{D} in D.
- There exists a special element ε_{O} in O.
- A binary operation $+: D \times D \rightarrow D$ is given with the following properties:
$-\forall \mathbf{a}, \mathbf{b} \in D, \mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
$-\forall \mathbf{a}, \mathbf{b}, \mathbf{c} \in D,(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$
$-\forall \mathbf{x} \in D, \mathbf{x}+\varepsilon_{D}=\varepsilon_{D}+\mathbf{x}=\mathbf{x}$
- A binary operation $\cdot: O \times D \rightarrow D$ is given with the following properties:
$-\forall \mathbf{a}, \mathbf{b} \in O, \mathbf{x} \in D,(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{x}=\mathbf{a} \cdot(\mathbf{b} \cdot \mathbf{x})$
$-\forall \mathbf{a} \in O, \mathbf{x}, \mathbf{y} \in D, \mathbf{a} \cdot(\mathbf{x}+\mathbf{y})=\mathbf{a} \cdot \mathbf{x}+\mathbf{a} \cdot \mathbf{y}$
- A binary operation $\cdot: O \times O \rightarrow O$ is given with the following properties:
$-\forall \mathbf{a}, \mathbf{b}, \mathbf{c} \in O,(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot(\mathbf{b} \cdot \mathbf{c})$
$-\forall \mathbf{x} \in O, \mathbf{x} \cdot \varepsilon_{O}=\varepsilon_{O} \cdot \mathbf{x}=\mathbf{x}$

In this problem, we treat D as the set of all 3×1 matrices over \mathbb{F}_{p} and O as the set of all 3×3 matrices over \mathbb{F}_{p}, where $p=10^{9}+7$. That is, you can treat the above operations as the usual matrix addition and matrix multiplication modulo $10^{9}+7$.

Now, m queries are given in the form a b c o:

- Let $\mathbf{s}=\varepsilon_{D}$.
- For all points i with $a x_{i}+b y_{i}<c$, modify \mathbf{s} to $\mathbf{s}+\mathbf{d}_{i}$, then modify \mathbf{d}_{i} to $\mathbf{o} \cdot \mathbf{d}_{i}$.
- Return \mathbf{s} as the answer of the query.

As a data structure master, you need to perform all queries and find the answer.

Input

The first line of the input contains a single integer $n\left(1 \leq n \leq 3 \cdot 10^{5}\right)$, indicating the number of points.
Each of the following n lines contains five integers $x_{i}, y_{i}, d_{i 0}, d_{i 1}, d_{i 2}$, indicating the coordinates of the i-th point and its value $\mathbf{d}_{i}=\left[\begin{array}{l}d_{i 0} \\ d_{i 1} \\ d_{i 2}\end{array}\right]$.
The next line of the input contains a single integer $m\left(1 \leq m \leq 1.5 \cdot 10^{4}\right)$, indicating the number of the queries.

Each of the following m lines contains twelve integers $a, b, c, o_{00}, o_{01}, o_{02}, o_{10}, \ldots, o_{22}$. Note that the real $\mathbf{o}=\left[\begin{array}{lll}o_{00} & o_{01} & o_{02} \\ o_{10} & o_{11} & o_{12} \\ o_{20} & o_{21} & o_{22}\end{array}\right]$.
It is guaranteed that:

- $\left|x_{i}\right| \leq 10^{6},\left|y_{i}\right| \leq 10^{6}$.
- $\left|a_{i}\right| \leq 10^{3},\left|b_{i}\right| \leq 10^{3}, b_{i} \neq 0,\left|c_{i}\right| \leq 10^{6}$.
- All matrix elements are from 0 to $10^{9}+6$ inclusive.
- For all $1 \leq i \leq m$ and $1 \leq j \leq n, a_{i} x_{j}+b_{i} y_{j} \neq c_{i}$.
- For all $1 \leq i \leq m$ and $1 \leq j \leq m,\left(\frac{a_{i}}{b_{i}}, \frac{c_{i}}{b_{i}}\right) \neq\left(\frac{a_{j}}{b_{j}}, \frac{c_{j}}{b_{j}}\right)$.

Output

For each query, output a single line containing three integers s_{0}, s_{1}, s_{2}, indicating $\mathbf{s}=\left[\begin{array}{l}s_{0} \\ s_{1} \\ s_{2}\end{array}\right]$.

Example

standard input	standard output
```5 11234 12 1246 1 112512 1211 1 5 5 66203 3 1144114 2 3 4 5 2 34 11440011342112345 -1 -1 -10 3 2 1 4 6 5 4 3 2```	$\begin{array}{llll} \hline 2 & 3 & 4 & \\ 25 & 50 & 40 \\ 92 & 58 & 139 \end{array}$

## Note

Note that the solution does not depend on other properties of matrix addition/multiplication than those mentioned in the statements. Defining $D$ and $O$ as sets of matrices is only for testing convenience (since we can't use the graders or interaction libraries).

