Problem J. Just Another Number Theory Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 mebibytes

Given are n prime numbers $1<p_{1}<p_{2}<\ldots<p_{n}<10^{18}$ with $p_{1} \leq 100$. We say that the number x is good if x is divisible by at least one p_{i}.
Take all good numbers $a_{1}, a_{2}, \cdots, a_{m}$ in $\left[0, p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}\right]$ and sort them in order $\left(a_{1}<a_{2}<\ldots<a_{m}\right)$. Your task is to calculate $\sum_{i=1}^{m-1}\left(a_{i+1}-a_{i}\right)^{2}$. As the sum could be very large, you should output it modulo 998244353.

Input

The first line of the input contains a single integer $n\left(1 \leq n \leq 10^{5}\right)$.
The next line of the input contains n integers $p_{1}, p_{2}, \ldots, p_{n}\left(1<p_{1}<p_{2}<\ldots<p_{n}<10^{18}\right)$. It is guaranteed that $2 \leq p_{1}<100$ and each $p_{i}(1 \leq i \leq n)$ is a prime number.

Output

Output a single line with a single integer, indicating the answer modulo 998244353.

Examples

standard input	standard output	
2	5	18
3	7233	31275

Note

In the first example, the list of good numbers is:

- $a_{1}=0$
- $a_{2}=2$
- $a_{3}=4$
- $a_{4}=5$
- $a_{5}=6$
- $a_{6}=8$
- $a_{7}=10$

Thus, the answer is $(2-0)^{2}+(4-2)^{2}+(5-4)^{2}+(6-5)^{2}+(8-6)^{2}+(10-8)^{2}=18$.

