Problem A. Mode

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

You are given an array a of length n. Define $c n t_{x}$ as the number of occurrences of x in a.
Now you can do the following operation at most once: select a non-empty subarray $a_{l}, a_{l+1}, a_{l+2}, \ldots, a_{r}$ and an integer $k \in\left[-10^{9}, 10^{9}\right]$, and add k to all the elements in the subarray.
Your first task is to find the maximum possible value of $W=\max \left\{c n t_{x} \mid x \in \mathbb{Z}\right\}$ after one operation. Your second task is to find all v such that $c n t_{v}=W$ can be achieved after one operation.

Input

The first line contains an integer $T(1 \leq T \leq 20)$, the number of test cases.
Each test case consists of two lines. The first line contains a single integer $n\left(2 \leq n \leq 2 \cdot 10^{5}\right)$, and the second line contains n integers denoting the array $\left(1 \leq a_{i} \leq 10^{9}\right)$.
It is guaranteed that $\sum n \leq 5 \cdot 10^{5}$, and a_{i} are not all the same.

Output

For each test case, output one integer on the first line, denoting the maximum value W. Then for all integers v satisfying the condition, output them in ascending order.

Example

standard input	standard output
4	4
5	1
12321	5
5	1
11311	4
6	2
242488	4
5	8
12345	2
	1
	2
	3
	4
	5

Note

The values of W for the test cases are $4,5,4,2$.

