

Problem A. Mode

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 1024 mebibytes

You are given an array a of length n. Define cnt_x as the number of occurrences of x in a.

Now you can do the following operation at most once: select a non-empty subarray $a_l, a_{l+1}, a_{l+2}, \ldots, a_r$ and an integer $k \in [-10^9, 10^9]$, and add k to all the elements in the subarray.

Your first task is to find the maximum possible value of $W = \max\{cnt_x \mid x \in \mathbb{Z}\}$ after one operation. Your second task is to find all v such that $cnt_v = W$ can be achieved after one operation.

Input

The first line contains an integer T ($1 \le T \le 20$), the number of test cases.

Each test case consists of two lines. The first line contains a single integer n ($2 \le n \le 2 \cdot 10^5$), and the second line contains n integers denoting the array ($1 \le a_i \le 10^9$).

It is guaranteed that $\sum n \leq 5 \cdot 10^5$, and a_i are not all the same.

Output

For each test case, output one integer on the first line, denoting the maximum value W. Then for all integers v satisfying the condition, output them in ascending order.

Example

standard input	standard output
4	4
5	1
1 2 3 2 1	5
5	1
1 1 3 1 1	4
6	2
2 4 2 4 8 8	4
5	8
1 2 3 4 5	2
	1
	2
	3
	4
	5

Note

The values of W for the test cases are 4, 5, 4, 2.