## Problem D. Rotate Sum 2

Input file: standard input<br>Output file: standard output<br>Time limit: 1 second<br>Memory limit: 1024 mebibytes

Grammy loves geometry. Today, she takes out her precious convex polygon and plays with it on a piece of paper. The polygon has $n$ vertices numbered from 1 to $n$ in counterclockwise order. For vertex $i$, the next vertex in this order is $i^{+}=i \bmod n+1$, and the previous one is $i^{-}=(i+n-2) \bmod n+1$.
Firstly, Grammy draws a horizontal line on the paper. Secondly, she chooses two vertices $i$ and $j$ of the polygon independently and equiprobably. Thirdly, she places the edge between vertex $i$ and vertex $i^{-}$on the line, landing all other vertices above the line, and draws a vertical line through vertex $j$. Next, she rotates the polygon clockwise, taking vertex $i$ as the rotation center, until vertex $i^{+}$hits the line. When vertex $i^{+}$hits the line, she changes the rotation center to vertex $i^{+}$and rotates again until vertex $i^{++}$ (the next after $i^{+}$) hits the line. She repeats this operation until vertex $i$ hits the line again. Finally, she draws another vertical line through the vertex $j$ and calculates the area between the trajectory of vertex $j$ and the three lines.

Since you do not know which points Grammy will choose, you want to calculate the expected value of the area.

## Input

The first line contains a single integer $n(3 \leq n \leq 100000)$, denoting the number of vertices in the polygon. Each of the following $n$ lines contains two integers $x_{i}$ and $y_{i}\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$, denoting the coordinates of a vertex of the polygon. The vertices are given in counterclockwise order. It is guaranteed that the polygon is strictly convex.

## Output

Output a single real number denoting the expected area. The answer is considered correct if its absolute of relative error does not exceed $10^{-4}$.

## Example

|  | standard input | standard output |
| :--- | :--- | :--- |
| 3 | -1 | 18.763234503173919 |
| 1 | 1 |  |
| -1 | 2 |  |

## Note



For the first example, if the $i$-th vertex is marked as $A_{0}$, and the $j$-th vertex is marked as $B_{0}$, then the polygon will be $A_{3} B_{3} C_{2}$ after 3 rotations, and the trajectory of vertex $j$ is arc $h$ and arc $p$. The area of the green part is the answer in this case.

