Problem E. Smaller LCA

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	1024 mebibytes

Grammy has a tree with vertices numbered from 1 to n. For each vertex as the root, she wants to know how many unordered pairs of points (x, y) have their lowest common ancestor z satisfy the inequality $z \leq x \cdot y$. Please count it for her.

Input

The first line contains a single integer $n(1 \leq n \leq 300000)$, denoting the number of vertices of the tree.
Each of the next $n-1$ lines contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$, indicating that there is an edge between vertex u_{i} and vertex v_{i}. It is guaranteed that the given graph is a tree.

Output

Output n lines. The i-th line must contain a single integer: the number of pairs satisfying the condition when vertex i is the root.

Example

	standard input		standard output
5	15		
1	2	15	
4	2	15	
2	5	15	
3	5	14	

