

Problem C. Puzzle: Hearthstone

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 mebibytes

Hearthstone is one of the popular video games. Please read the following rules carefully. They are different from the usual rules.

There are n kinds of secret cards numbered 1, 2, ..., n. There are two types of events about secrets:

- add: Add a secret with an unknown number into the hero zone. No two secrets with the same number can be in the hero zone simultaneously.
- test x y: Test whether secret x exists. If secret x exists, then y = 1 and secret x is removed from the hero zone; otherwise, y = 0. Note that whatever y is, secret x does not exist in the hero zone after testing x.

An event sequence $E = [e_1, \dots, e_m]$ is valid if and only if it is possible to assign a number from 1 to n for each add event and perform the events e_1, e_2, \dots, e_m in order such that:

- no secrets are in the hero zone at the beginning;
- secret x does not exist right before an event which adds a secret x;
- secret x exists right before an event test x 1;
- secret x does not exist right before an event test x 0.

Given q events e_1, e_2, \ldots, e_q , you need to maintain an event sequence E. Initially, E is empty. For each $i = 1, 2, \ldots, q$ in order, try to append e_i to the end of E. If E is invalid, remove e_i and report a bug. Otherwise, find the number of secrets that must exist in the hero zone and the number of secrets that must not exist in the hero zone after performing the events of E in order.

Note that the number of secrets that must (not) exist is not just the number of (non-)existing secrets. For example, if n = 2, initially, secret 1 is missing and secret 2 is missing, so the answers would be 0 and 2. After a single add, secret 1 is unknown (can be or not be in hero zone) and secret 2 is unknown, so the answers are 0 and 0. After test 2 0, secret 2 is missing, so we know the added one was certainly secret 1, so secret 1 is present, and the answers are 1 and 1. See examples for better understanding.

Input

There are multiple test cases. The first line of input contains an integer T ($1 \le T \le 10^5$), the number of test cases. For each test case:

The first line contains two integers n and q ($1 \le n, q \le 10^5$), the number of kinds of secrets and the number of events.

The *i*-th line of the following q lines represents e_i and contains:

- either a string "add";
- or a string "test" followed by two integers x and y $(1 \le x \le n, 0 \le y \le 1)$.

It is guaranteed that both the sum of n and the sum of q over all test cases do not exceed 10^5 .

Output

For each test case:

For each event, if it can be appended, output two integers: the number of secrets that must exist in the hero zone and the number of secrets that must not exist in the hero zone; otherwise, output the string "bug".

Examples

2 1 8 bug test 1 0 test 1 1 bug add 0 1 test 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	
test 1 0	
test 1 1 bug	
add 0 1 1 0 1 0 1 test 1 1 0 1	
test 1 0	
test 1 1 0 1	
add 0 1	
test 1 1 0 0	
test 1 0 2 0	
2 10 bug	
add 1 1	
add bug	
add 2 0	
test 1 1 bug	
test 1 1 bug	
add 1 1	
add bug	
add	
test 2 1	
test 2 1	
1 0 0	
4 7	
add 0 1	
add 2 2	
test 3 0 2 0	
test 4 0 1 1	
add 1 3	
test 1 1	
test 3 1	