Problem F. Longest Common Subsequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

Given a sequence s of length n and a sequence t of length m, find the length of the longest common subsequence of s and t.

Input

There are multiple test cases. The first line of input contains an integer $T\left(1 \leq T \leq 10^{3}\right)$, the number of test cases.

For each test case:
The only line contains seven integers: n, m, p, x, a, b, and $c\left(1 \leq n, m \leq 10^{6}, 0 \leq x, a, b, c<p \leq 10^{9}\right)$. Here, n is the length of s, and m is the length of t.
To avoid large input, you should generate the sequences as follows:
For each $i=1,2, \ldots, n$ in order, update x to $\left(a x^{2}+b x+c\right) \bmod p$, and then set s_{i} to x. And then, for each $i=1,2, \ldots, m$ in order, update x to $\left(a x^{2}+b x+c\right) \bmod p$, and then set t_{i} to x.
It is guaranteed that both the sum of n and the sum of m over all test cases do not exceed 10^{6}.

Output

For each test case:
Output a single line with a single integer: the length of the longest common subsequence of s and t.

Example

| standard input | | | | | | standard output | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | | 1024 | 1 | 1 | 1 | 1 | 3 | |
| 3 | 4 | 1024 | 0 | 0 | 0 | 0 | 3 | |

Note

In the first sample, $s=[3,13,183,905]$ and $t=[731,565,303]$.
In the second sample, $s=[0,0,0]$ and $t=[0,0,0,0]$.

