Problem I. Equivalence in Connectivity

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

Two undirected graphs of size n are equivalent in connectivity when there is a path from u to v in one graph if and only if there is a path from u to v in the other graph for all $1 \leq u<v \leq n$.

Given is a sequence of k graphs $G_{1}, G_{2}, \ldots, G_{k}$. Each graph is of size n. In this sequence, for each $i=2,3, \ldots, k$, there exists $p_{i}<i$ such that G_{i} can be obtained from $G_{p_{i}}$ by adding or removing an edge. Divide the given graphs into groups: two graphs must be in the same group if and only if they are equivalent in connectivity.

Input

There are multiple test cases. The first line of input contains an integer $T\left(1 \leq T \leq 10^{5}\right)$, the number of test cases. For each test case:
The first line contains three integers k, n, and $m\left(1 \leq k, n \leq 10^{5}, 0 \leq m \leq \min \left(10^{5}, \frac{n(n-1)}{2}\right)\right)$: the number of graphs, the number of vertices in each graph, and the number of edges in G_{1}.

Each of the following m lines contains two integers u and $v(1 \leq u<v \leq n)$, denoting an edge of G_{1} connecting u and v. It is guaranteed that there are no multiple edges in G_{1}.

The i-th of the following $k-1$ lines contains an integer p_{i+1}, a string t_{i+1}, and two integers x_{i+1} and y_{i+1} $\left(1 \leq p_{i+1} \leq i, 1 \leq x_{i+1}<y_{i+1} \leq n\right)$. Each string t_{i+1} is either "add" or "remove".
If t_{i+1} is "add", then G_{i+1} is obtained from $G_{p_{i+1}}$ by adding an edge connecting x_{i+1} and y_{i+1}. It is guaranteed that this edge does not exist in $G_{p_{i+1}}$.
If t_{i+1} is "remove", then G_{i+1} is obtained from $G_{p_{i+1}}$ by removing an edge connecting x_{i+1} and y_{i+1}. It is guaranteed that this edge exists in $G_{p_{i+1}}$.
It is guaranteed that the sum of n, the sum of m, and the sum of k in all test cases do not exceed 10^{5}.

Output

For each test case:
On the first line, output an integer r : the number of groups.
For each group, output a single line which contains an integer k followed by k integers: the size of the group and the numbers of graphs in the group.
You can output the groups and the graphs in any order.

Example

standard input	standard output
2	7
15118	21013
611	523458
16	31711
69	114
68	2612
12	19
15	115
910	5
25	3249
1 add 311	656781012
1 add 23	2114
3 add 58	2311
4 add 511	113
3 add 710	
1 add 610	
3 add 310	
1 remove 68	
5 add 49	
1 add 29	
8 add 78	
3 add 24	
1 remove 69	
10 remove 69	
1452	
15	
14	
1 add 24	
1 add 34	
1 add 24	
4 add 34	
4 add 13	
5 add 13	
2 add 23	
1 add 12	
4 add 34	
3 add 45	
9 add 23	
3 remove 15	
3 remove 34	

