Problem K. Symmetry: Convex

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

Given is a strictly convex polygon with n vertices $p_{1}, p_{2}, \ldots, p_{n}$ in counterclockwise. Denote C_{i} as the polygon with i vertices $p_{1}, p_{2}, \ldots, p_{i}$. For each $i=3,4, \ldots, n$, find the lines which C_{i} is symmetric about.

Input

There are multiple test cases. The first line of input contains an integer $T\left(1 \leq T \leq 10^{5}\right)$, the number of test cases. For each test case:
The first line contains an integer $n\left(3 \leq n \leq 3 \cdot 10^{5}\right)$, the number of vertices.
The i-th of the following n lines contains two integers $x_{i}, y_{i}\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$, the coordinates of p_{i}. It is guaranteed that the vertices are given counterclockwise, and the polygon is strictly convex, that is, no three vertices are collinear.
It is guaranteed that the sum of n in all test cases does not exceed $3 \cdot 10^{5}$.

Output

For each test case:
For each $i=3,4, \ldots, n$, on the first line, output an integer k : the number of lines which C_{i} is symmetric about.
In each of the following k lines, output three integers $a, b, c\left(-2 \cdot 10^{18} \leq a, b, c \leq 2 \cdot 10^{18}\right)$, denoting that C_{i} is symmetric about the line $a x+b y+c=0$.
If there are multiple answers, you can output any of them. For each i, you can output the lines in any order.

Example

standard input	standard output
3	1
4	11 -1
00	4
10	1-1 0
11	0 2 -1
01	$200-1$
3	11 -1
00	0
30	1
11	110
4	4
-1000000000-1000000000	$\begin{array}{lll}1 & -1 & 0\end{array}$
$1000000000-1000000000$	010
10000000001000000000	100
-1000000000 1000000000	110

