Problem E

Special equations

Description

Let $\mathrm{f}(\mathrm{x})=\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}+\ldots+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{0}$, in which $\mathrm{a}_{\mathrm{i}}(0<=\mathrm{i}<=n)$ are all known integers. We call $\mathrm{f}(\mathrm{x}) \equiv 0(\bmod m)$ congruence equation. If m is a composite, we can factor m into powers of primes and solve every such single equation after which we merge them using the Chinese Reminder Theorem. In this problem, you are asked to solve a much simpler version of such equations, with m to be prime's square.

Input

The first line is the number of equations $T, T<=50$.
Then comes T lines, each line starts with an integer $\operatorname{deg}(1<=\operatorname{deg}<=4)$, meaning that $\mathrm{f}(\mathrm{x})$'s degree is deg. Then follows deg integers, representing a_{n} to $a_{0}\left(0<\operatorname{abs}\left(a_{n}\right)\right.$ $<=100$; $\operatorname{abs}\left(a_{i}\right)<=10000$ when $\operatorname{deg}>=3$, otherwise $\left.\operatorname{abs}\left(a_{i}\right)<=100000000, i<n\right)$. The last integer is prime $\operatorname{pri}(p r i=10000)$.

Remember, your task is to solve $\mathrm{f}(\mathrm{x}) \equiv 0\left(\bmod p r \|^{*} p r\right)$

Output

For each equation $\mathrm{f}(\mathrm{x}) \equiv 0\left(\bmod p r i^{*} p r i\right)$, first output the case number, then output anyone of x if there are many x fitting the equation, else output "No solution!"

Sample Input

4

211-57
15-29959929
2 1-96255532 89309811
414545877544946 -2210 9601

Sample Output

Case \#1: No solution!
Case \#2: 599
Case \#3: 96255626
Case \#4: No solution!

