## Problem I. Best Sun

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 512 mebibytes |

Ivan likes painting. He decided to paint a sun.
To do that, he took $n$ points with integer coordinates on the plane. Ivan will draw segments connecting some pairs of points to get the best sun.

- Ivan will connect exactly $n$ pairs of points with segments between them.
- All segments should not intersect (except for endpoints).
- There should be exactly one cycle. This cycle should be a convex polygon.
- Each point that is not one of the polygon vertices should lie outside of the polygon and should be connected with one of the polygon's vertices.
- It is possible that all vertices will lie on the cycle.

Ivan wants to paint a bright, pretty sun. So he came up with the score of the sun:

- Let us define $S$ as the area of the polygon.
- Let us define $P$ as the sum of lengths of all drawn segments.
- The value $\frac{S}{P}$ is the score of the sun.

What is the maximum possible score of the sun?

## Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{4}\right)$ - the number of test cases. Description of test cases follows.
The first line of each test case contains a single integer $n(3 \leq n \leq 300)$ - the number of points.
Each of the next $n$ lines contains two integers $x_{i}, y_{i}\left(\left|x_{i}\right|,\left|y_{i}\right| \leq 10^{6}\right)$. All points are different. No three points lie on the same line.
It is guaranteed that the sum of $n^{2}$ for all test cases does not exceed 90000 .

## Output

For each test case, print a single real number - the maximum possible score of the sun that can be drawn. The absolute or relative error should not exceed $10^{-6}$.

## Example

|  | standard input |
| :--- | :--- |
| 4 | standard output |
| 3 |  |
| -1 -1 | 0.3090169943749474 |
| 1 -1 | 1.2368614277111258 |
| 0 | 1 |
| 4 | 0.2711375415034555 |
| 0 | 0 |
| 10 | 0 |
| 0 | 10 |
| 8 | 1 |
| 5 | 1.5631002094915825 |
| 2 | 0 |
| -2 | 0 |
| 1 | 1 |
| -1 | 1 |
| 0 | 3 |
| 8 |  |
| 4 | 4 |
| -4 | 4 |
| 4 | -4 |
| -4 | -4 |
| 5 | 6 |
| -6 | 5 |
| -5 | -6 |
| 6 | -5 |

## Note

The picture of the sun with the maximum score in the fourth test case:


For this sun, $S=64, P=32+4 \sqrt{5}$, so its score is $\frac{64}{32+4 \sqrt{5}}$.

