Problem J. Fast Bridges

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Let us consider a square city of size $k \times k$. There is exactly one house in each cell.
People can go from any cell to neighbouring cell (only by side) in 1 unit of time.
Government decided to build n fast bridges to make the city better. Each fast bridge connects two cells $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ such that $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$. People can go from one end of the bridge to another in $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|-1$ units of time.

To analyze how the city became faster, you are asked to calculate the sum of shortest distances between all pairs of cells. Since it can be large, find it modulo 998244353.

Input

The first line contains two integers $n, k\left(0 \leq n \leq 500,2 \leq k \leq 10^{9}\right)$ - the number of bridges and the size of the city.
Each of the next n lines contains four integers $x_{1}, y_{1}, x_{2}, y_{2}\left(1 \leq x_{1}<x_{2} \leq k, 1 \leq y_{1}, y_{2} \leq k, y_{1} \neq y_{2}\right)$. It is guaranteed that all tuples $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ are different.

Output

Print a single integer - the answer to the problem.

Examples

	standard input		
2	2		6
1	1	2	2
1	2	2	1

Note

In the first example, the shortest distance between all pairs of cells is 1 , so the sum is 6 .

