
root
Day 1 Tasks

English (ISC)

Where Is the Root?
This is an interactive problem

You are given a tree of n vertices. The tree is a graph such that there is exactly one simple path
between every pair of vertices. It's also guaranteed that at least one vertex is directly
connected by an edge to at least 3 vertices. One of the vertices is the root, and your task is to
find it. In order to do this, you are allowed to ask queries of the following form:

For a given set a ,a ,… ,a of vertices, check if their lowest common ancestor is in this set.

A vertex v is a common ancestor of a set S of vertices if the paths from all vertices in S to the root
pass through v. The lowest common ancestor (LCA) of a set S of vertices is the common ancestor
of S which is farthest from the root.

Interaction
Start the interaction by reading a single integer n (4 ≤ n ≤ 500) - the number of vertices.

Then read next n −1 lines. The i-th line will contain two integers a , b (1 ≤ a , b ≤ n), indicating
that there is an edge between vertices a , b in the tree.

It's guaranteed that these n −1 edges form a tree and at least one vertex is directly connected by
an edge to at least 3 vertices.

To ask a query, firstly output '' ? '', then the integer m, and then m distinct integers a ,a ,… ,a (

1 ≤m ≤ n, 1 ≤ a ≤ n, all a are distinct) - vertices, for which you want to check if their LCA is
among them.

As a response, the interactor will output ''YES '' if their LCA is one of a ,a ,… ,a , and '' NO ''

otherwise.

You can ask at most 1000 queries, but you'll get a different number of points depending on how
many queries you ask. Outputting the answer does not count as a query. Please, look at the
scoring section for the details.

When you have identified the root, output the symbol '' ! '' and then one integer v (1 ≤ v ≤ n) - the

root. Then terminate your program.

1 2 m

i i i i

i i

1 2 m

i i

1 2 m

root (1 of 4)

After printing a query do not forget to output end of line and flush the output. To do this, use:

fflush(stdout) or cout.flush() in C++;
stdout.flush() in Python;

It is guaranteed that for each test case, the tree and its root are fixed before the start of the
interaction. In other words, the interactor is not adaptive.

Example
 Input:

7

4 1

1 2

4 3

3 5

3 6

4 7

Output:

? 2 5 6

Input:

NO

Output:

? 3 6 3 5

Input:

YES

Output:

? 2 1 7

Input:

NO

Output:

? 2 4 6

Input:

YES

Output:

! 4

root (2 of 4)

Note

The hidden root is vertex 4.

In the first query, the LCA of vertices 5 and 6 is vertex 3 which is not among vertices 5 and 6 so the
answer is '' NO ''.

In the second query, the LCA of vertices 3, 5, and 6 is vertex 3 so the answer is '' YES ''.

In the third query, the LCA of vertices 1 and 7 is vertex 4 so the answer is '' NO ''.

In the fourth query, the LCA of vertices 4 and 6 is vertex 4 so the answer is '' YES ''.

After that, we can guess that root is vertex 4 which is the correct answer.

Scoring
1. (7 points): n ≤ 9
2. (10 points): n ≤ 30
3. (up to 83 points): n ≤ 500

In the first and second subtasks you can ask at most 1000 queries.

root (3 of 4)

In the third subtask, let k be the maximum number of queries you asked in any test. If k ≤ 9, you
will get 83 points. Otherwise, you will get ⌊max(10, 83 ⋅ (1 −))⌋ points.

C++ code that computes the number of points for the third subtask:

((k <= 9) ? 83: max(10, int(83 * (1 - log(k - 6.0) / 7))))

7
ln(k−6)

root (4 of 4)

