Game With Numbers

Two players are playing a game. They are given an array $a_{1}, a_{2}, \ldots, a_{n}$ as well as an array $b_{1}, b_{2}, \ldots, b_{m}$.

The game consists of m rounds. Players are participating in rounds alternatively. During the i-th round (for i from 1 to m) the corresponding player (first player, if i is odd, and second if i is even) has to do exactly one of the following:

- remove all elements from the array a that are divisible by b_{i},
- remove all elements from the array a that are not divisible by b_{i}.

The first player wants to minimize the sum of the remaining elements in the array a after all m rounds, and the second wants to maximize it. Find the sum of the remaining elements in the array a after all m rounds if both players are playing optimally.

Input

The first line contains two integers $n, m\left(1 \leq n \leq 2 \cdot 10^{4}, 1 \leq m \leq 2 \cdot 10^{5}\right)$ - the length of the array a and the number of rounds in the game.

The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(-4 \cdot 10^{14} \leq a_{i} \leq 4 \cdot 10^{14}\right)$ - the elements of the array a.

The third line contains m integers $b_{1}, b_{2}, \ldots, b_{m}\left(1 \leq b_{i} \leq 4 \cdot 10^{14}\right)$ - the elements of the array b.

Output

Output a single integer - the sum of the remaining elements of the array a after all m rounds if both players are playing optimally.

Examples

Input 1:

```
6
2 2 5 2 2 7
2 5
```


Output 1:

7

Input 2:

```
51
-5000111000-5000222000-15 5 2
5
```

Output 2:

```
-10000333010
```


Note

In the first sample, one possible flow of the game is the following:

- Round 1: first player removes from a all elements divisible by 2 . a becomes (5,7).
- Round 2: second player removes from a all elements divisible by 5 . a becomes (7). If he had removed from a all elements not divisible by 5 , a would become (5), which has a smaller sum of elements and therefore is not desirable for the second player.

Scoring

1. (3 points): $m=1$
2. (6 points): $b_{i+1}=b_{i}(1 \leq i<m)$, i.e. all elements of the array b are the same
3. (15 points): $b_{i+1} \bmod b_{i}=0 \quad(1 \leq i<m)$
4. (9 points): $1 \leq m \leq 7$
5. (11 points): $1 \leq m \leq 20$
6. (15 points): $1 \leq m \leq 100$
7. (18 points): $1 \leq a_{i}, b_{i} \leq 10^{9}$
8. (11 points): $m \bmod 2=0, b_{2 i-1}=b_{2 i}\left(1 \leq i \leq \frac{m}{2}\right)$
9. (12 points): No additional constraints
