Problem G
 Permutation Transformation

A permutation of $1 \ldots N$ is an array of integers $P[1 \ldots N]$ such that each integer from 1 to N appears exactly once in $P[1 \ldots N]$. A transformation to $P[1 \ldots N]$ is defined as changing $P[1 \ldots N]$ into another permutation $P^{\prime}[1 \ldots N]$ where $P^{\prime}[i]=P[P[i]]$ for all $1 \leq i \leq N$.

You are given a permutation $P[1 \ldots N]$. Your task in this problem is to count the number of distinct permutations you can get by doing a transformation to the given permutation for zero or more times.

For example, let $P[1 \ldots N]=[3,5,1,2,4]$.

- By doing a transformation, you will change P into $[1,4,3,5,2]$.
- By doing another transformation, you will change P into $[1,5,3,2,4]$.
- By doing another transformation, you will change P into $[1,4,3,5,2]$ again.

Therefore, there are 3 distinct permutations you can get by doing a transformation for zero or more times.

1. $[3,5,1,2,4]$
2. $[1,4,3,5,2]$
3. $[1,5,3,2,4]$

Input

Input begins with a line containing an integer: $N(1 \leq N \leq 100000)$ representing the number of elements in the given permutation. The next line contains N integers: $P[i](1 \leq P[i] \leq N)$ representing the permutation. The elements in $P[1 \ldots N]$ are guaranteed to be unique.

Output

Output in a line an integer representing the number of distinct permutations you can get by doing a transformation to the given permutation for zero or more times, modulo 998244353.

Sample Input \#1

```
5
3 5 1 2 4
```


Sample Output \#1

```
3
```


Explanation for the sample input/output \#1

This is the example from the problem description.

Sample Input \#2

```
8
75168 2 3 4
```


Sample Output \#2

```
4
```


Explanation for the sample input/output \#2

There are 4 distinct permutations you can get by doing a transformation to the given permutation for zero or more times.

1. $[7,5,1,6,8,2,3,4]$
2. $[3,8,7,2,4,5,1,6]$
3. $[7,6,1,8,2,4,3,5]$
4. $[3,4,7,5,6,8,1,2]$
