Problem B

Fun with Stones

Alice and Bob will play a game with 3 piles of stones. They take turns and, on each turn, a player must choose a pile that still has stones and remove a positive number of stones from it. Whoever removes the last stone from the last pile that still had stones wins. Alice makes the first move.

The i-th pile will have a random and uniformly distributed number of stones in the range $\left[L_{i}, R_{i}\right]$. What is the probability that Alice wins given that they both play optimally?

Input

The input consists of a line with 6 integers, respectively, $L_{1}, R_{1}, L_{2}, R_{2}, L_{3}, R_{3}$. For each $i, 1 \leq$ $L_{i} \leq R_{i} \leq 10^{9}$.

Output

Print an integer representing the probability that Alice wins modulo $10^{9}+7$.
It can be shown that the answer can be expressed as an irreducible fraction $\frac{p}{q}$, where p and q are integers and $q \not \equiv 0\left(\bmod 10^{9}+7\right)$, that is, we are interested in the integer $p \times q^{-1}\left(\bmod 10^{9}+7\right)$.

| Input example 1
 3 3455 |
| :--- | :--- |$|$| Output example 1 |
| :--- |
| 1 |

Input example 2	Output example 2
44881212	0

Input example 3						
1	10	1	10	1	10	Output example 3
:---						
580000005						

Input example 4	Output example 4
515293542	1

