慨Ans
programming tools sponsor

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

You are given a rectangular grid of M rows and N columns. The rows and columns are indexed from 0 to $M-1$ and from 0 to $N-1$ respectively. In each grid cell (i, j), there is a lowercase letter character $A[i, j]$. This grid represents a maze, and the goal to solve the maze is to find a walk going from $(0,0)$ to ($M-1, N-1$). The walk consists of several steps. In each step you can choose one of the four directions (going from a grid cell to a neighboring cell that shares an edge.) Notice that it is okay to revisit a cell multiple times during the walk, including the starting cell $(0,0)$ and the ending cell $(M-1, N-1)$. If you record all characters along the walk, you'll get a string that represents this walk.

Truckski is not a fan of palindromes, so he would like to find a walk that does not contain any palindromic substrings of length at least two, which he called a good walk. A string $s_{1} s_{2} \cdots s_{k}$ is called a palindrome, if it reads the same after reversing the string, i.e., $s_{1} s_{2} \cdots s_{k}=s_{k} s_{k-1} \cdots s_{1}$. A substring of a string can be obtained by removing a (possibly empty) prefix and a (possibly empty) suffix.

Now, there are Q interesting locations $\left\{\left(r_{i}, c_{i}\right)\right\}_{i=1}^{Q}$ that Truckski wishes to visit. For each location $\left(r_{i}, c_{i}\right)$, can you help Truckski to find the length of the longest good walk that visits the location grid cell $\left(r_{i}, c_{i}\right)$ at least once? If there are arbitrarily long good walks please output -1 . If there does not exist any good walk, please output -2 .

Input Format

The first line contains an integer T, indicating the number of test cases. For each test case, there are two integers M and N in the first line. In each of the following M lines there is a string of length N, the c-th character in the r-th line is the character $A[r, c]$. The next line contains an integer Q. In each of the following Q lines there are two integers r_{i} and c_{i} indicating the location of interest.

Output Format

For each interesting location, output the length of the longest good walk that visits this location at least once, or -1 if the good walk can be arbitrarily long, or -2 if there does not exist such a good walk.

Technical Specification

- $T \leq 20$
- $2 \leq M \leq 100$
- $2 \leq N \leq 100$
- $1 \leq Q \leq 100$
- For all i such that $1 \leq i \leq Q, 0 \leq r_{i}<M$ and $0 \leq c_{i}<N$.
- For each grid cell $(r, c), A[r, c] \in\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$ is a lowercase letter.

Sample Input 1

```
3
3 5
abbba
bccab
cabcc
2
0 1
1 0
3 4
aaba
bbaa
abab
1
1
4 4
abca
cxxb
bxxc
acba
1
0 1
```


Sample Output 1

```
9
9
-2
-1
```


Note

This problem is not the easiest problem in this contest.

