慨Ans
programming tools sponsor

Problem B
 Balanced Seesaw Array

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

Bob likes to play seesaw. He thinks that it would be really funny if the seesaw is in a balanced state. It means that the seesaw is not tilted to the left and right. After playing the seesaw, Bob thinks about a problem related to the balanced seesaw.

Let $A=\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ denote an array of length m. Bob thinks that $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ is a balanced seesaw array if there exists an integer k between 1 to m such that $\sum_{i=1}^{m}(i-k) a_{i}=0$.

Bob gets an array $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ as his birthday gift, and he is curious about whether some non-empty subarray is a balanced seesaw array. More formally, he is interested in whether $\left[a_{\ell}, a_{\ell+1}, \ldots, a_{r}\right]$ is a balanced seesaw array for some specified pair (ℓ, r) where $1 \leq \ell \leq r \leq n$. Bob also finds that the elements in its array will change by time, it will have the following two types of changes.

1. $a_{\ell}, a_{\ell+1}, \ldots, a_{r}$ are increased by x.
2. $a_{\ell}, a_{\ell+1}, \ldots, a_{r}$ are changed to x.

For convenience, Bob will give you the array $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ first. Then, there are q operations. Each operation will be one of the following three types.

- $1 \ell r x$: means that $a_{\ell}, a_{\ell+1}, \ldots, a_{r}$ are increased by x.
- $2 \ell r x$: means that $a_{\ell}, a_{\ell+1}, \ldots, a_{r}$ are changed to x.
- $3 \ell r$: means that Bob is curious about whether the subarray $\left[a_{\ell}, a_{\ell+1}, \ldots, a_{r}\right]$ is a balanced seesaw array. You should output "Yes" or "No" for each operation type 3 .

Input Format

The first line of input contains two integers n and $q . n$ is the length of the array, and q is the number of operations. The second line contains n integers a_{i} to define the array. Each of the following q lines is an operation described in the problem statement.

Output Format

Please output "Yes" or "No" to indicate whether $\left[a_{\ell}, a_{\ell+1}, \ldots, a_{r}\right]$ is a balanced seesaw array for each type 3 operation.

Technical Specification

- $1 \leq n \leq 100000$
- $1 \leq q \leq 1200000$
- $-1000 \leq a_{i} \leq 1000$
- $-10000 \leq x \leq 10000$

2022 ICPC Taiwan Online Programming Contest

- For $1 \leq i \leq n$, you may assume that $\left|a_{i}\right| \leq 1.5 \times 10^{9}$ after any operation.
- $1 \leq \ell \leq r \leq n$

Sample Input 1

```
3 6
1 2 3
3 1 1
3 1 3
1 1 1 2
3 1 3
2 2 2 0
3 2 3
```

Sample Output 1

```
Yes
No
Yes
Yes
```

