部ANS
programming tools sponsor

Problem D
 Distance and Tree

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

Graph problems are popular in competitive programming, and problems related to distanceis and trees appear frequently. Let us start with some definitions.

A set is a collection of distinct elements. An undirected simple graph G is a pair (V, E), where V is a set and E is a set of unordered pairs of V 's elements. For a graph $G=(V, E)$, we call V as G 's vertex set and E as G 's edge set. Elements in V are vertices, and elements in E are edges.

Let u and v be vertices in V. A path from u to v of length k is a sequence of edges $e_{1}, e_{2}, \ldots, e_{k} \in$ E such that there exists a sequence of distinct vertices, v_{1}, \ldots, v_{k+1}, satisfying the following conditions.

- $u=v_{1}$.
- $v=v_{k+1}$.
- $e_{i}=\left\{v_{i}, v_{i+1}\right\}$.

If p is a path from u to v, then u and v are connected by p.
We can define distances and trees now. Given two vertices $u, v \in V$, the distance $\delta(u, v)$ from u to v is 0 if $u=v$. If there exists a path from u to v, then $\delta(u, v)$ is the minimum number of edges required to form a path from u to v. Otherwise, $\delta(u, v)=\infty$. A tree is an undirected graph in which any distinct two vertices u and v are connected by exactly one path.

Danny gives you a sequence of non-negative integers $d_{1}, d_{2}, \ldots, d_{n}$ and asks you to construct a tree $G_{T}=\left(V_{T}, E_{T}\right)$ satisfying the following conditions.

- The vertex set $V_{T}=\left\{p_{1}, \ldots, p_{n}\right\}$ is a set of points on a two dimensional Euclidean plane. For $1 \leq k \leq n$, the coordinate of p_{k} is $(\cos k \theta, \sin k \theta)$ where $\theta=\frac{2 \pi}{n}$.
- For any two distinct edges $\left\{p_{a}, p_{b}\right\}$ and $\left\{q_{a}, q_{b}\right\}$ in E_{T}, the line segments $\overline{p_{a} p_{b}}$ and $\overline{q_{a} q_{b}}$ do not intersect unless those two edges share a common vertex (that is, $\left\{p_{a}, p_{b}\right\} \cap\left\{q_{a}, q_{b}\right\} \neq \emptyset$).
- There exists a vertex r such that $\delta\left(r, p_{k}\right)=d_{k}$ for $1 \leq k \leq n$. We call r as the root of G_{T}.

If there exists such tree graph, please output the edge set E_{T}. Otherwise, output -1 .

Input Format

The first line contains a positive integer n indicating the number of vertices of the tree to be constructed. The second line contains n non-negative integers d_{1}, \ldots, d_{n}, the sequence given by Danny.

Output Format

If there does not exist such a tree G_{T}, output -1 . Otherwise, output $n-1$ lines to represent the edge set E_{T}. The i-th line should contain two space-separated integers u_{i} and v_{i}. The i-th edge in E_{T} should be $\left\{p_{u_{i}}, p_{v_{i}}\right\}$. If there are multiple solutions, you may output any of them.

Technical Specification

- $2 \leq n \leq 100000$
- For $1 \leq k \leq n, 0 \leq d_{k} \leq n-1$.

Sample Input 1

5
01213

Sample Output 1

```
-1
```


Sample Input 2

5
$\begin{array}{lllll}1 & 1 & 0 & 1\end{array}$

Sample Output 2

```
1 3
3 2
34
5
```

