Problem A. Zero AAMP Currents

Input file: standard input
Output file: standard output
Time limit: $\quad 2$ seconds
Memory limit: $\quad 256$ megabytes

Thomas Edison stumbled upon an alien electrical device that appears to break known laws of physics! The device consists of n batteries connected by m unidirectional wires, which we will represent as vertices and edges that form a graph. The i-th wire is directed from battery v_{i} to battery $u_{i}, v_{i} \neq u_{i}$. Let ($v_{i} \rightarrow u_{i}$) denote such a wire.

To make this device work, Thomas must assign a current strength to each wire such that this assignment results in a successful configuration. For a configuration to be successful, two conditions must be met:

1) All current strength values are non-zero integers in the range [$-1000,1000]$ AAMP (Alien Amperes).
2) For every cycle found in this device, the sum of AAMP values from all wires in it must be 0 . A cycle is a sequence of edges (wires) $\left(a_{1} \rightarrow a_{2}\right),\left(a_{2} \rightarrow a_{3}\right), \ldots,\left(a_{k-1} \rightarrow a_{k}\right),\left(a_{k} \rightarrow a_{1}\right)$. If edges $(x \rightarrow y)$ and $(y \rightarrow x)$ both exist, they also form a cycle - the wires are unidirectional.
Help him with this task.

Input

The first line contains two integers n and m - the number of batteries and the number of wires in the device, respectively. Next, m lines contain two integers each v_{i} and u_{i}, which mean that the i-th wire goes from battery v_{i} to u_{i}.
$1 \leq n \leq 10^{5}$,
$1 \leq m \leq 2 \cdot 10^{5}$,
$1 \leq v_{i}, u_{i} \leq n, v_{i} \neq u_{i}$.

Output

Print m lines containing one number each: the i-th number should be the current strength of i-th wire (in AAMP). Each number should be non-zero and in the range of [$-1000,1000$]. If multiple answers exist, you may print any one of them.

Example

	standard input		standard output
4	7	-1	
1	2	-1	
2	3	2	
3	1	-2	
1	4	-1	
2	4	-2	
1	4	1	
3	2		

Note

Note that there can be multiple wires from battery x to y. Also note that wire $(x \rightarrow y)$ with strength 3 AAMP is not the same as $(y \rightarrow x)$ with strength -3 . As mentioned before, wires are unidirectional and can have a negative current strength - that's one of the mysteries of this device ...

