Problem A. Zero AAMP Currents

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

Thomas Edison stumbled upon an alien electrical device that appears to break known laws of physics! The device consists of n batteries connected by m unidirectional wires, which we will represent as vertices and edges that form a graph. The *i*-th wire is directed from battery v_i to battery u_i , $v_i \neq u_i$. Let $(v_i \rightarrow u_i)$ denote such a wire.

To make this device work, Thomas must assign a current strength to each wire such that this assignment results in a successful configuration. For a configuration to be successful, two conditions must be met:

1) All current strength values are non-zero integers in the range [-1000, 1000] AAMP (Alien Amperes).

2) For every cycle found in this device, the sum of AAMP values from all wires in it must be 0. A cycle is a sequence of edges (wires) $(a_1 \rightarrow a_2), (a_2 \rightarrow a_3), \ldots, (a_{k-1} \rightarrow a_k), (a_k \rightarrow a_1)$. If edges $(x \rightarrow y)$ and $(y \rightarrow x)$ both exist, they also form a cycle – the wires are unidirectional.

Help him with this task.

Input

The first line contains two integers n and m – the number of batteries and the number of wires in the device, respectively. Next, m lines contain two integers each v_i and u_i , which mean that the *i*-th wire goes from battery v_i to u_i .

$$\begin{split} &1 \leq n \leq 10^5, \\ &1 \leq m \leq 2 \cdot 10^5, \\ &1 \leq v_i, u_i \leq n, \ v_i \neq u_i. \end{split}$$

Output

Print *m* lines containing one number each: the *i*-th number should be the current strength of *i*-th wire (in AAMP). Each number should be non-zero and in the range of [-1000, 1000]. If multiple answers exist, you may print any one of them.

Example

standard output
-1
-1
2
-2
-1
-2
1

Note

Note that there can be multiple wires from battery x to y. Also note that wire $(x \to y)$ with strength 3 AAMP is not the same as $(y \to x)$ with strength -3. As mentioned before, wires are unidirectional and can have a negative current strength - that's one of the mysteries of this device ...