Problem A. City

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Hi ICPCer, welcome to Xi'an.

Being a beautiful ancient city, Xi'an is the capital city of Zhou, Qin, Han, and Tang Dynasties. With a long history, the streets in Xi'an have a grid pattern.

Attracted by the streets' structure, Coach *Pang* would like to conduct his research on them. He draws an $n \times m$ grid on the board. The grid consists n + 1 vertical line segments and m + 1 horizontal line segments. The vertical and horizontal line segments intersect at exactly $(n+1) \times (m+1)$ points, forming $n \times m$ unit squares. We call the $(n + 1) \times (m + 1)$ intersections grid points. Output the number of line segments(not only vertical or horizontal) l satisfying the following three conditions:

- 1. The length is not zero.
- 2. Both endpoints of l are grid points.
- 3. The midpoint of l is a grid point.

Input

The only line contains two integers $n, m(1 \le n, m \le 1000)$.

Output

Print the answer in a single line.

Examples

standard input	standard output
1 1	0
2 3	14