Problem B. Black and White

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 mebibytes

Master Pang walks from the bottom-left corner of a $n \times m$ chessboard to the top-right corner. The chessboard contains $n+1$ horizontal line segments and $m+1$ vertical line segments. The horizontal line segments are numbered from 0 to n from bottom to top and the vertical ones are numbered from 0 to m from left to right. The intersection of horizontal line segment r and vertical segment c is denoted by (r, c). The bottom-left corner is $(0,0)$ and the top-right corner is (n, m). At each step, he can only walk from (x, y) to $(x, y+1)$ or from (x, y) to $(x+1, y)$.
Each of the $n \times m$ cells is colored white or black. A cell with corners $(i, j),(i+1, j),(i, j+1),(i+1, j+1)$ $(0 \leq i<n, 0 \leq j<m)$ is colored white if and only if $i \equiv j(\bmod 2)$.
Given Pang's walking path from $(0,0)$ to (n, m), his score is $a-b$ where a is the number of white cells to the left of his walking path and b is the number of black cells to the left of his walking path.
Help Master Pang count the number of walking paths with score k modulo 998244353.

Input

The first line contains a single integer T - the number of test cases $(1 \leq T \leq 100)$.
Each of the next T lines contains three integers n, m and k ($1 \leq n \leq 100000,1 \leq m \leq 100000,-100000 \leq k \leq 100000$).

Output

For each test case, output a single integer - the answer modulo 998244353.

Example

		standard input		standard output
5		1		
1	1	0		0
1	1	-1	1	
2	2	1	4	
2	2	0	16	
4	4	1		

